5 resultados para semiconducting silicon carbide

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substitution reactions between multiwalled carbon nanotubes and silicon monoxide vapour have been investigated using transmission electron microscopy. Different reactions occurred inside the multiwalled nanotubes and on the nanotube external surfaces, resulting in the formation of silicon carbide nanowires with a core–shell structure. The substitution reaction process and end products are strongly affected by nanotube structures and a ball milling treatment of the starting materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One-dimensional (1D) nanomaterials including nanotubes, nanowires and nanorods have many new properties, functionalities and a large range of promising applications. A major challenge for these future industrial applications is the large-quantity production. We report that the ball milling and annealing process has the potential to achieve the mass production. Several examples including C, BN nanotubes and SiC, Zn nanowires are presented to demonstrate such capability. In addition, both size and structure of 1D nanomaterials can be controlled by varying processing conditions. New growth mechanisms involved in the process have been investigated and the high-energy ball milling has an important role in the formation of these 1D nanomaterials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nodularised Ductile Cast Iron, when subjected to heat treatment processes - austenitising and austempering produces Austempered Ductile Iron (ADI). The microstructure of ADI also known as "ausferrite" consists of ferrite, austenite and graphite nodules. Machining ADI using conventional techniques is often a problematic issue due to the microstructural phase transformation from austenite to martensite during machining. This paper evaluates the wear characteristics of ultra hard cutting tools when machining ADI and its effect on machinability. Machining trials consist of turning ADI (ASTMGrade3) using two sets of PCBN tools with 90% and 50% CBN content and two sets of ceramics tools; Aluminium Oxide Titanium Carbide and Silicon Carbide - whisker reinforced Ceramic. The cutting parameters chosen are categorized as roughing and finishing conditions; the roughing condition comprises of constant cutting speed (425 m/min) and depth of cut (2mm) combined with variable feed rates of 0.1, 0.2, 0.3 and 0.4mm/rev. The finishing condition comprises of constant cutting speed (700 m/min) and depth of cut (0.5mm) combined with variable feed rates of 0.1, 0.2, 0.3 and 0.4mm/rev. The benchmark condition to evaluate the performance of the cutting tools was tool wear evaluation, surface texture analysis and cutting force analysis. The paper analyses thermal softening of the workpiece by the tool and its effect on the shearing mechanism under rough and finish machining conditions in term of lower cutting forces and enhanced surface texture of the machined part.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The abrasive wear resistance of four distinct metallurgical steel microstructures - bainite, pearlite, martensite and tempered martensite, with similar hardness levels was investigated. A pin-on-disc tribometer was used to simulate the two-body abrasive condition (i.e. the metallic surface abrading against the silicon carbide abrasive particles) and evaluate the specific wear rate of the microstructures. Each microstructure had a unique response towards the abrasion behaviour and this was largely evident in the friction curve. However, the multi-phase microstructures (i.e. bainite and pearlite) demonstrated better abrasion resistance than the single-phase microstructures (i.e. martensite and tempered martensite). Abrasion induced microstructural changes at the deformed surfaces were studied using sub-surface and topographical techniques. The properties of these layers (i.e. surface profile measurements) determined the amount of material loss for each microstructure. These were directly linked to the single-wear track analysis that highlighted a marked difference in their mode of material removal. Ploughing and wedge formation modes were dominant in the case of bainite and pearlite microstructures, whereas the cutting mode could be attributed to the higher material loss in the single-phase microstructures. The combination of brittle and ductile phases in the multi-phase microstructure matrix could be one of the driving factors for their superior abrasion resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron carbide nanowires with uniform carbon nitride coating layers were synthesized on a silicon substrate using a simple thermal process. The structure and morphology of the as-synthesized nanowires were characterized using x-ray diffraction, scanning and transmission electron microscopy and electron energy loss spectroscopy. A correlation between the surface smoothness of the nanowire sidewalls and their lateral sizes has been observed and it is a consequence of the anisotropic formation of the coating layers. A growth mechanism is also proposed for these growth phenomena.