3 resultados para self-etching adhesive

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The facet selectivity of the halide ions and chlorauric acid for several shaped silver nanocrystals is presented in this paper. Two inorganic ions show different representations when they are used for etching silver nanocrystals in the self-sacrificial template reaction. The morphological changes of the silver nanocrystals indicate that the halide ions prefer to etch the (110) facets of silver nanocrystals, while in the chlorauric acid etching reaction, gold first modifies the (110) facets and then lets chlorauric acid etch the (111) facets instead. The selective facet etching on individual nanoparticles in the solution phase has crucial significance in the control-synthesis of nanocrystals and the facet asymmetric reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lubricin is a glycoprotein found in articular joints which has been recognized as being an important biological boundary lubricant molecule. Besides providing lubrication, we demonstrate, using a quartz crystal microbalance, that lubricin also exhibits anti-adhesive properties and is highly effective at preventing the non-specific adsorption of representative globular proteins and constituents of blood plasma. This impressive anti-adhesive property, combined with lubricin's ability to readily self-assemble to form dense, highly stable telechelic polymer brush layers on virtually any substrates, and its innate biocompatibility, makes it an attractive candidate for anti-adhesive and anti-fouling coatings. We show that coatings of lubricin protein are as effective as, or better than, self-assembled monolayers of polyethylene glycol over a wide range of pH and that this provides a simple, versatile, highly stable, and highly effective method of controlling unwanted adhesion to surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of artificial scaffolds that effectively mimic the host environment of the cell have exciting potential for the treatment of many diseases in regenerative medicine. In particular, appropriately designed scaffolds have the capacity to support, replace, and mediate the transplantation of therapeutic cells in order to regenerate damaged or diseased tissues. To achieve these goals for regeneration, the engineering of an environment structurally similar to the native extracellular matrix (ECM) is necessary in order to closely match the chemical and physical conditions found within the extracellular niche. Recently, self-assembled peptide (SAP) hydrogels have shown great potential for such biological applications due to their inherent biocompatibility, propensity to form higher order structures, rich chemical functionality and ease of synthesis. Importantly, it is possible to control the organization and properties of the target materials as the chemical structure is determined by amino acid sequence. Here, the development of SAP hydrogels as functional cell scaffolds and useful tools in tissue engineering is reviewed.