4 resultados para selection signature

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anti-malware software producers are continually challenged to identify and counter new malware as it is released into the wild. A dramatic increase in malware production in recent years has rendered the conventional method of manually determining a signature for each new malware sample untenable. This paper presents a scalable, automated approach for detecting and classifying malware by using pattern recognition algorithms and statistical methods at various stages of the malware analysis life cycle. Our framework combines the static features of function length and printable string information extracted from malware samples into a single test which gives classification results better than those achieved by using either feature individually. In our testing we input feature information from close to 1400 unpacked malware samples to a number of different classification algorithms. Using k-fold cross validation on the malware, which includes Trojans and viruses, along with 151 clean files, we achieve an overall classification accuracy of over 98%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying applications and classifying network traffic flows according to their source applications are critical for a broad range of network activities. Such a decision can be based on packet header fields, packet payload content, statistical characteristics of traffic and communication patterns of network hosts. However, most present techniques rely on some sort of apriori knowledge, which means they require labor-intensive preprocessing before running and cannot deal with previously unknown applications. In this paper, we propose a traffic classification system based on application signatures, with a novel approach to fully automate the process of deriving signatures from unidentified traffic. The key idea is to integrate statistics-based flow clustering with payload-based signature matching method, so as to eliminate the requirement of pre-labeled training data sets. We evaluate the efficiency of our approach using real-world traffic trace, and the results indicate that signature classifiers built from clustered data and pre-labeled data are able to achieve similar high accuracy better than 99%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The support vector machine (SVM) is a popular method for classification, well known for finding the maximum-margin hyperplane. Combining SVM with l1-norm penalty further enables it to simultaneously perform feature selection and margin maximization within a single framework. However, l1-norm SVM shows instability in selecting features in presence of correlated features. We propose a new method to increase the stability of l1-norm SVM by encouraging similarities between feature weights based on feature correlations, which is captured via a feature covariance matrix. Our proposed method can capture both positive and negative correlations between features. We formulate the model as a convex optimization problem and propose a solution based on alternating minimization. Using both synthetic and real-world datasets, we show that our model achieves better stability and classification accuracy compared to several state-of-the-art regularized classification methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malware replicates itself and produces offspring with the same characteristics but different signatures by using code obfuscation techniques. Current generation anti-virus engines employ a signature-template type detection approach where malware can easily evade existing signatures in the database. This reduces the capability of current anti-virus engines in detecting malware. In this paper, we propose a stepwise binary logistic regression-based dimensionality reduction techniques for malware detection using application program interface (API) call statistics. Finding the most significant malware feature using traditional wrapper-based approaches takes an exponential complexity of the dimension (m) of the dataset with a brute-force search strategies and order of (m-1) complexity with a backward elimination filter heuristics. The novelty of the proposed approach is that it finds the worst case computational complexity which is less than order of (m-1). The proposed approach uses multi-linear regression and the p-value of each individual API feature for selection of the most uncorrelated and significant features in order to reduce the dimensionality of the large malware data and to ensure the absence of multi-collinearity. The stepwise logistic regression approach is then employed to test the significance of the individual malware feature based on their corresponding Wald statistic and to construct the binary decision the model. When the selected most significant APIs are used in a decision rule generation systems, this approach not only reduces the tree size but also improves classification performance. Exhaustive experiments on a large malware data set show that the proposed approach clearly exceeds the existing standard decision rule, support vector machine-based template approach with complete data and provides a better statistical fitness.