14 resultados para sediment particle size

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies examining recruitment processes for soft-sediment macroinvertebrate fauna in intermittent estuaries are rare and most studies of active habitat selection have been tested in the laboratory rather than the field. The present field study examined whether recruitment of the infaunal bivalve Soletellina alba was influenced by water depth and sediment particle size in the intermittent Hopkins River estuary, southern Australia. The number of recruits in sediment trays differed between water depths, but active habitat selection was not evident across treatments of varying sediment particle size. The use of sediments with varying particle sizes also provided an opportunity to identify potential discontinuities in body-size distributions of recruits associated with varying habitat architecture. The length (mm) of recruits was converted to the same scale used to express sediment particle size (i.e. phi units: phi = − log2 of sediment particle size). The size of recruits differed across water depths, but did not differ across treatments with fine (phi = 3) versus coarse (phi = 1) sediment, and no relationships were apparent between bivalve size and sediments consisting of varying particle size. These patterns of recruitment do not correspond with the distribution of adult S. alba within the Hopkins River estuary. Previous sampling has shown that abundances of juvenile and adult S. alba are variable across time, site and water depth, but are often greater at the deeper water depth (1.05 m below the Australian Height Datum). However, recruitment during the present study was greatest at the shallower water depth (0.05 m below AHD), and the apparent absence of active habitat selection suggests that the distribution of adults is unlikely to be attributable to differences in recruitment associated with sediments of varying particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a three-stage process consisting of mechanical milling, heat treatment, and washing has been used to manufacture nanoparticulate ZnO powders with a controlled particle size and minimal agglomeration. By varying the temperature of the post-milling heat treatment, it was possible to control the average particle size over the range of 28–57 nm. The photocatalytic activity of these powders was characterized by measuring the hydroxyl radical concentration as a function of irradiation time using the spin-trapping technique with electron paramagnetic resonance spectroscopy. It was found that there exists an optimum particle size of approximately 33 nm for which the photocatalytic activity is maximized. The existence of this optimal particle size is attributable to an increase in the charge carrier recombination rate, which counteracts the increased activity arising from the higher specific surface area for a sufficiently small particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20 min, 2 h, 5 h and 8 h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti–OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89 ± 0.76 μm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79 ± 0.31 to 10.25 ± 0.39 μm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle size and size distribution is an important parameter in solid liquid separation process especially in granular bed filtration and in dynamic microfiltration. This paper discusses their effects on the above processes from extensive experimental data obtained. In granular bed filtration, the experimental results showed that the initial efficiency follows the pattern reported by previous experimental and theoretical studies, i.e., lower efficiency for particles which fall in the range of critical size of 1 m. However, the particle removal during the transient stage increased with an increase in particle size for the range of sizes studied. An attempt was made to quantify these effects in granular bed filtration using semi-empirical approach. In dynamic membrane filtration also, the particle size plays a major role in the retention. However, despite the relative thickness of the membrane (compared to particle size) dynamic microfiltration appears more as a sieving process; the retention is mainly related to the largest pore size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The size of reinforced particles notably affects the electro-discharge machining (EDM) of metal matrix composites (MMCs). This paper explores the mechanism of wire EDM of MMCs with different sizes of reinforced particles as well as the corresponding unreinforced matrix material. The mechanisms of material removal, surface generation, and taper kerf formation were investigated. This study shows that the particles’ ability to protect matrix materials from the intense heat of electric arc controls the material removal rate, surface generation, and taper of kerf. The low melting point matrix material is removed very easily, but the heat resistance reinforced particles delay the removal of material and facilitate the transfer of the workpiece material to wire electrode and vice versa. Thus, the material stays longer in touch with intense heat and affects the surface generation, wire electrode wear, and width of the kerf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The population dynamics of the infaunal bivalve Soletellina alba was investigated at three sites situated within close proximity to the mouth of the Hopkins River estuary. The initial study design was planned to examine the importance of winter flooding to the persistence of this bivalve mollusc within the Hopkins estuary, since mass mortalities have been observed during previous years coincident with periods of winter flooding. Unfortunately, the climatic conditions experienced during this study were atypical compared to the long-term average, so detailed sampling was limited to two, unanticipated, non-flood years rather than two, highly anticipated, flood years. This hampered my ability to conduct complete tests of the importance of winter flooding. Patterns of river discharge and the frequency and duration of mouth opening and closing differed greatly from that expected. Unexpectedly, periods of mouth closure were not always associated with periods of minimal river discharge; low salinities were another unexpected result during an extended period of mouth closure during 1998. As expected, salinities varied considerably with increasing water depth when the estuary mouth was open. Mouth closure lead to salinities becoming more uniform between water depths but hypoxic and anoxic conditions became evident via stratification in the water column at 1 m below the Australian Height Datum (AHD). Other than trends associated with increased water depth, significant variation was not evident between measurements of salinity taken from three sites within close proximity of the estuary mouth (approximately 500 m), or during changes in tide. The most pertinent anomaly was the absence of winter flooding. The distribution and abundance of juvenile and adult S. alba was variable across all Dates, Sites and Channel elevations (i.e. water depths) sampled during this study. An experimental test comparing the recruitment of juveniles at different channel elevations and in sediments of varying particle size was conducted during an exceptionally successful period of recruitment during 1999. The results of these tests showed that recruitment was greatest at the shallowest channel elevation used, and there was little evidence that sediment particle size influenced recruitment. In contrast to 1999, recruitment during 1997 or 1998 was extremely poor. Growth rates were monitored using tagged individuals held in caged and uncaged plots, which revealed that growth was highly variable among individuals, but not between Sites. These tests also revealed that growth was negligible during the colder, winter months, and that the fastest growing individuals were capable of growing 0.2 mm/day. Mixed results were obtained for tests of potential cage artifacts and the influence of handling. Caging and differing amounts of handling did not appear to influence growth, but there was evidence that cages and handling influenced bivalve condition and number of mortalities. These direct tests appeared to be the most appropriate method for determining growth rates of this species, since attempts to analyse length-frequency data were made difficult by the apparent convergence of cohorts, and shell aging is difficult due to the thin, fragile nature of the shell. As expected, mass mortalities were observed during the flood of 1996, but not during the two non-flood years of 1997 and 1998. There were, however, some considerable declines in abundances at some channel elevations during the two non-flood years. However, these declines were attributable to the complete disappearance of individuals, rather than the sudden presence of numerous, recently dead individuals that typify observed declines during winter flooding. The complete disappearance of individuals suggest that S. alba may be capable of post-settlement emigration, or that they were consumed by an unknown predator. Salinity tolerance tests showed that bivalves exposed to low salinities (≤6 ppt), exhibited poorer condition and took longer to re-burrow into sediments than those exposed to greater salinities (≥14 ppt), while death of bivalves exposed to salinities ≤1 ppt occurred after 8 days of exposure. These tests provide evidence that low salinities are probably the principal cause of mass mortalities during winter flooding, although the interaction between salinity, temperature and turbidity also deserve consideration. The results of this study indicate that certain aspects of winter flooding, especially salinity, are responsible for the mass mortalities of S. alba rather than the result of a short-lived life history. I hypothesise that the survival of very young juveniles (between 0.5 and 1 mm shell length) and rapid growth rates are important features of the life history of S. alba that explain its successful persistence within the Hopkins River estuary. The rapid rates of growth suggest that it may be possible for juveniles that survive winter flooding to grow, reach sexual maturity, and reproduce before the onset of the next flood event. Unfortunately, the increased survivorship of juveniles during periods of winter flooding was not demonstrated by this study because of the absence of winter flooding and also relatively poor recruitment. It is highly likely that this species is capable of completing it entire life cycle within the estuary since the absence of other nearby populations, together with periods of mouth closure, are likely to greatly limit the potential contribution made by larvae entering from the surrounding marine environment. This study has added considerably to our knowledge of how infauna cope with life in the intermittently closing estuaries that typify semi-arid coastlines in the Southern Hemisphere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wool fibres consist of micro to nano scale protein constituents that could be used for innovative applications. While techniques for extracting these constituents or making wool fibres into organic powders have been developed, effectively dispersing the particles and accurately determining their size has been difficult in practice. In this study, an ultrasonic method was employed to disperse cortical cells extracted from wool fibres into an
immersion oil or ethanol. Specimens of the cortical cells were then observed under optical microscopy and scanning electron microscopy, respectively. Cell length and maximum cell diameter were measured to quantify the cell size. The results suggest significant discrepancies exist in the cortical cell size obtained from the two different measurement techniques. The maximum diameter of wool cortical cells obtained from the optical microscope was much larger than that from the scanning electron microscope, while the length was much shorter. A correction factor is given so that cortical cell size obtained from the two measurement techniques can be compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Diverse species assemblages are often associated with a diversity of habitat structures. Sedimentary systems seem to be no exception, as within sedimentary systems benthic species diversity within a sample point appears to correlate with sediment grain size complexity. However, it remains to be shown whether total benthic species diversity relates to a system’s sediment heterogeneity across multiple systems. In the present paper we examined whether bivalve diversity is associated with: (1) sediment heterogeneity across systems and (2) sediment grain size complexity within systems, at 9 temperate and tropical tidal flat systems. Although bivalve life-history strategies, like post-settlement habitat selection, might suggest that sediment heterogeneity should be important for bivalve species, bivalve diversity and sediment heterogeneity were not associated across systems. Interestingly, the association between total benthic diversity and sediment heterogeneity was also not significant, suggesting that changing species composition across systems does not account for the lack of a correlation between bivalve diversity and sediment heterogeneity. Instead of habitat differentiation, bivalve diversity within a sample point was highest in ‘complex’ fine-grained sediments and bivalve distributions showed a large degree of distributional overlap in all systems. The results of this study at both smaller and larger spatial scales suggest that coexistence between bivalve species in diverse tidal flats is not associated with increased sediment heterogeneity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Light scattering from small spherical particles has applications in a vast number of disciplines including astrophysics, meteorology optics and particle sizing. Mie theory provides an exact analytical characterization of plane wave scattering from spherical dielectric objects. There exist many variants of the Mie theory where fundamental assumptions of the theory has been relaxed to make generalizations. Notable such extensions are generalized Mie theory where plane waves are replaced by optical beams, scattering from lossy particles, scattering from layered particles or shells and scattering of partially coherent (non-classical) light. However, no work has yet been reported in the literature on modifications required to account for scattering when the particle or the source is in motion relative to each other. This is an important problem where many applications can be found in disciplines involving moving particle size characterization. In this paper we propose a novel approach, using special relativity, to address this problem by extending the standard Mie theory for scattering by a particle in motion with a constant speed, which may be very low, moderate or comparable to the speed of light. The proposed technique involves transforming the scattering problem to a reference frame co-moving with the particle, then applying the Mie theory in that frame and transforming the scattered field back to the reference frame of the observer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper applies dimensional analysis to propose an alternative model for estimating the effective density of flocs (Δρf). The model takes into account the effective density of the primary particles, in addition to the sizes of the floc and primary particles, and does not consider the concept of self-similarity. The model contains three dimensionless products and two empirical parameters (αf and βf), which were calibrated by using data available in the literature. Values of αf=0.7 and βf=0.8 were obtained. The average value of the primary particle size (Dp) for the data used in the analysis, inferred from the new model, was found to vary from 0.05 μm to 100 μm with a mean value of 2.5 μm. Good comparisons were obtained in comparing the estimated floc-settling velocity on the basis of the proposed model for effective floc density with the measured value.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seagrass ecosystems, considered among the most efficient carbon sinks worldwide, encompass a wide variety of spatial configurations in the coastal landscape. Here we evaluated the influence of the spatial configuration of seagrass meadows at small scales (metres) on carbon storage in seagrass sediments. We intensively sampled carbon stocks and other geochemical properties (δ(13)C, particle size, depositional fluxes) across seagrass-sand edges in a Zostera muelleri patchy seagrass landscape. Carbon stocks were significantly higher (ca. 20%) inside seagrass patches than at seagrass-sand edges and bare sediments. Deposition was similar among all positions and most of the carbon was from allochthonous sources. Patch level attributes (e.g. edge distance) represent important determinants of the spatial heterogeneity of carbon stocks within seagrass ecosystems. Our findings indicate that carbon stocks of seagrass areas have likely been overestimated by not considering the influence of meadow landscapes, and have important relevance for the design of seagrass carbon stock assessments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The specific wear rate and friction coefficient of a pearlitic microstructure subjected to different abrasive environments (i.e. SiC and alumina) were examined. A CSM high temperature pin-on-disc tribometer was used to simulate the two-body abrasive condition (i.e. the metallic surface abrading against the abrasive particles). The characteristics of the abrasive particles (i.e. particle size and density) revealed a significant impact on the amount of material loss. The specific wear rate of the pearlitic microstructure decreased with a reduction in the abrasive particle size, irrespective of the particle type. In addition, distinct particle deterioration mechanisms were observed during the abrasion process, which was largely determined by the abrasive particle size. Attrition, shelling and fracture were some of the dominant particle deterioration mechanisms occurring in both of the abrasive environments. SEM and EDX analysis on the wear debris displayed a unique metallic chip formation with respect to the particle type. Furthermore, the abrading efficiency (i.e. threshold level) of the abrasive particles was identified by means of interrupted abrasive wear tests. The dense packing nature of the alumina abrasive particles resulted in a significantly higher material removal rate than the SiC abrasive environment.