4 resultados para seagrass die-off

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine pathogens of the genus Labyrinthula have been identified as the cause of wasting disease in seagrass systems in both temperate and subtropical regions. An understanding of the association between environmental factors and the prevalence of wasting disease in seagrass meadows is important for elucidating plant-pathogen interactions in coastal environments. We conducted a survey of 7 turtle grass-dominated beds within the Florida Keys National Marine Sanctuary to assess the relationship between environmental and biological parameters on seagrass health. All sites contained Labyrinthula spp.; the most pathogenic strain was obtained from an anthropogenically impacted site. Leaf and total biomass, in addition to root/rhizome carbon content, canopy light and % light transmitted, all displayed strong negative correlations with a wasting index (WI). It was noted that many of the same environmental measurements that showed negative correlations with WI also displayed strong positive correlations with canopy light levels. These data suggest that light availability may be an important factor that has previously been understated in the seagrass disease literature yet warrants more attention with respect to turtle grass susceptibility to infection. Studies such as this are important because they identify gaps in our understanding of plant-pathogen interactions in subtropical marine ecosystems. Furthermore, the relationships identified in this study may offer insight into which factors are most useful in identifying "at-risk" meadows prior to the onset of larger scale die-off events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of reclaimed wastewater for irrigation of horticultural crops is commonplace in many parts of the world and is likely to increase. Concerns about risks to human health arising from such practice, especially with respect to infection with microbial pathogens, are common. Several factors need to be considered when attempting to quantify the risk posed to a population, such as the concentration of pathogens in the source water, water treatment efficiency, the volume of water coming into contact with the crop, and the die-off rate of pathogens in the environment. Another factor, which has received relatively less attention, is the amount of food consumed. Plainly, higher consumption rates place one at greater risk of becoming infected. The amount of vegetables consumed is known to vary among ethic groups. We use Quantitative Microbial Risk Assessment Modelling (QMRA) to see if certain ethnic groups are exposed to higher risks by virtue of their consumption behaviour. The results suggest that despite the disparities in consumption rates by different ethnic groups they generally all faced comparable levels of risks. We conclude by suggesting that QMRA should be used to assess the relative levels of risk faced by groups based on divisions other than ethnicity, such as those with compromised immune systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10–3 to 10–1 when reclaimed-water irrigation ceased 1 day before harvest and from 10–9 to 10–3 when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of ≤10–4, i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10–4 standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food preparation could substantially lower risks and need to be considered in future models, particularly for developed nations where these extra risk reduction measures are more common.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.