4 resultados para sea anemone

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local adaptation in response to fine-scale spatial heterogeneity is well documented in terrestrial ecosystems. In contrast, in marine environments local adaptation has rarely been documented or rigorously explored. This may reflect real or anticipated effects of genetic homogenization, resulting from widespread dispersal in the sea. However, evolutionary theory predicts that for the many benthic species with complex life histories that include both sexual and asexual phases, each parental habitat patch should become dominated by the fittest and most competitive clones. In this study we used genotypic mapping to show that within headlands, clones of the sea anemone Actinia tenebrosa show restricted distributions to specific habitats despite the potential for more widespread dispersal. On these same shores we used reciprocal transplant experiments that revealed strikingly better performance of clones within their natal rather than foreign habitats as judged by survivorship, asexual fecundity, and growth. These findings highlight the importance of selection for fine-scale environmental adaptation in marine taxa and imply that the genotypic structure of populations reflects extensive periods of interclonal competition and site-specific selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cnidarians display a diverse range of reproductive tactics including sexual and asexual modes of reproduction. Although few studies have looked for intraspecific variation in reproductive tactics, flexible expression of such life-history traits may be favoured in species that occupy a range of habitats. We tested this in the sea anemone Actinia tenebrosa by comparing cycles of reproductive activity and the mode of production of brooded larvae in local populations occupying boulder fields and stable rock platforms. We determined the mode of production of broods from eight rock platforms (separated by up to 1600 km) and two boulder shores on the south east coast of Australia using a combination of allozyme data and four newly characterised microsatellite markers.

We determined seasonal patterns of brooding and gonad development by monthly dissection of 15–30 adults from each of two boulder fields and two stable platforms. Previous genetic studies have shown that populations of A. tenebrosa on rock platforms can be highly clonal, whereas anemones on more heterogeneous boulder habitats display levels of genotypic diversity similar to that expected for sexual reproduction. We genotyped a total of 221 juveniles from 37 brooding adults including 11 broods and 80 juveniles from boulder shores. We did not detect any evidence of sexual production of broods. All brooded juveniles displayed identical multi-locus genotypes to their brood parent irrespective of habitat of origin or location, including 28 broods (200 juveniles) that were heterozygous at one or more locus. Similarly, we found that temporal patterns of gonad formation and brooding were consistent across habitats and locations. We detected 346 mature males, 234 non-reproductive or immature individuals, and no mature females within a total of 580 dissected individuals. These data suggest that the reproductive tactics of A. tenebrosa are essentially fixed and that variation in the genotypic diversity of populations may reflect variation in factors such as the input of sexually derived planktonically dispersed recruits or post-settlement processes. However, the apparent lack of females paradoxically implies that sexual reproduction, and hence recruitment, must be rare or no longer possible within some populations, and highlights the need for long-term studies of these populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extreme variation in early life-history strategies is considered a moderately good predictor of genetic subdivision and hence dispersal for a range of marine species. In reality, however, a good deal of population differentiation must reflect historical effects, more subtle variation in life histories, and, particularly, the interaction of larvae with oceanographic processes. Using a combination of allozyme and microsatellite markers, we show that the large-scale genetic structure of populations of three species (direct and planktonically developing cushion stars and a planktonic developing sea anemone that is also asexually viviparous) varies consistently, in line with the predicted capacity for dispersal within three geographic regions. We detected high levels of genetic subdivision for the direct developing cushion star (FST = 0.6), low levels for the planktonically developing cushion star (FST = 0.009), and intermediate levels for the sexual/asexual sea anmone (FST = 0.19). These patterns are exhibited despite the highly variable patterns of current movement and the presence of biogeographic barriers. Our results suggest that, although there is large scale genetic differentiation for two species, patterns of population connectivity are remarkably consistent within major regions and do not reflect variation in major oceanographic processes or genetic discontinuity coincident with biogeographic boundaries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peptide toxins found in a wide array of venoms block K+ channels, causing profound physiological and pathological effects. Here we describe the first functional K+ channel-blocking toxin domain in a mammalian protein. MMP23 (matrix metalloprotease 23) contains a domain (MMP23TxD) that is evolutionarily related to peptide toxins from sea anemones. MMP23TxD shows close structural similarity to the sea anemone toxins BgK and ShK. Moreover, this domain blocks K+ channels in the nanomolar to low micromolar range (Kv1.6 > Kv1.3 > Kv1.1 = Kv3.2 > Kv1.4, in decreasing order of potency) while sparing other K+ channels (Kv1.2, Kv1.5, Kv1.7, and KCa3.1). Full-length MMP23 suppresses K+ channels by co-localizing with and trapping MMP23TxD-sensitive channels in the ER. Our results provide clues to the structure and function of the vast family of proteins that contain domains related to sea anemone toxins. Evolutionary pressure to maintain a channel-modulatory function may contribute to the conservation of this domain throughout the plant and animal kingdoms.