21 resultados para routing performance

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the key challenges in geographic routing is how to deal with dead-ends, where greedy routing fails to find a neighbor node which is closer to the destination. Most existing geographic routing algorithms just switch to the deterministic face routing or limits its face searching range. In this paper, we demonstrate that we can improve routing performance by considering local connectivity status at each node before making routing decision. We present a protocol, Density Ripple Exchange (DRE), that maintains local density information at each node, and a new geographic routing algorithm, Geographic Ripple Routing (GRR), that achieves better routing performance in both hop stretch and transmission stretch than existing geographic routing algorithms by exploiting available connectivity information. Our simulations demonstrate that we increased the performance for GRR over Greedy Perimeter Stateless Routing (GPSR) by about 15%. The cost of this improved performance is a small amount of additional local connectivity information required for our algorithm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the Multi-level Virtual Ring (MVR), a new name routing scheme for sensor networks. MVR uses selection algorithm to identify sensor nodes' virtual level and uses Distribution Hash Table (DHT) to map them to the MVR, The address routing performs well in wired network, but it's not true in sensor network. Because when nodes are moving, the address of the nodes must be changed Further, the address routing needs servers to allocate addresses to nodes. To solve this problem, the name routing is being introduced, such as Virtual Ring Routing (VRR). MVR is a new name routing scheme, which improves the routing performance significantly by introducing the multi-level virtual ring and cross-level routing. Experiments show this embedded name routing is workable and achieves better routing performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anycast is a new service in IPv6, and there are some open issues about the anycast service. In this paper, we focus on efficient and reliable aspects of application layer anycast. We apply the requirement based probing routing algorithm to replace the previous period based probing routingalgorithm for anycast resolvers. We employ the twin server model among the anycast servers, therefore, try to present a reliable service in the Internet environment. Our theoretical analysis shows that the proposed architecture works well, and it offers a more efficient routing performance and fault tolerance capability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mobile ad-hoc networks are characterised by constant topology changes, the absence of fixed infrastructure and lack of any centralised control. Traditional routing algorithms prove to be inefficient in such a changing environment. Ad-hoc routing protocols such as dynamic source routing (DSR), ad-hoc on-demand distance vector routing (AODV) and destination-sequence distance vector (DSDV) have been proposed to solve the multi hop routing problem in ad-hoc networks. Performance studies of these routing protocols have assumed constant bit rate (CBR) traffic. Real-time multimedia traffic generated by video-on demand and teleconferencing services are mostly variable bit rate (VBR) traffic. Most of these multimedia traffic is encoded using the MPEG standard. (ISO moving picture expert group). When video traffic is transferred over MANETs a series of performance issues arise. In this paper we present a performance comparison of three ad-hoc routing protocols - DSR, AODV and DSDV when streaming MPEG4 traffic. Simulation studies show that DSDV performs better than AODV and DSR. However all three protocols fail to provide good performance in large, highly mobile network environments. Further study is required to improve the performance of these protocols in mobile ad-hoc networks offering VBR services.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we evaluate the performance of routing protocols for mobile ad hoc networks using different physical layer models. The results obtained show that the performance results obtained using idealized models such as the free space propagation model vary significantly when propagation effects such as path loss and shadowing are considered. This difference in performance indicates that optimization is required in the protocol development space that takes into account channel state information (CSI). Such an optimization requires a cross layer approach to be adopted and a framework for protocol performance evaluation to be established. We believe that this work would serve as a first step in this direction. We provide comparative performance results through network simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human associated delay-tolerant network (HDTN) is a new delay-tolerant network where mobile devices are associated with humans. It can be viewed from both their geographic and social dimensions. The combination of these different dimensions can enable us to more accurately comprehend a delay-tolerant network and consequently use this multi-dimensional information to improve overall network efficiency. Alongside the geographic dimension of the network which is concerned with geographic topology of routing, social dimensions such as social hierarchy can be used to guide the routing message to improve not only the routing efficiency for individual nodes, but also efficiency for the entire network.

We propose a multi-dimensional routing protocol (M-Dimension) for the human associated delay-tolerant network which uses the local information derived from multiple dimensions to identify a mobile node more accurately. Each dimension has a weight factor and is organized by the Distance Function to select an intermediary and applies multi-cast routing. We compare M-Dimension to existing benchmark routing protocols using the MIT Reality Dataset, a well-known benchmark dataset based on a human associated mobile network trace file. The results of our simulations show that M-Dimension has a significant increase in the average success ratio and is very competitive when End-to-End Delay of packet delivery is used in comparison to other multi-cast DTN routing protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality-of-Service is an important issue in multimedia applications; so far most of the research focuses on bandwidth guarantee, few pays attention to the server performance guarantee. In this paper we pay more attention to the server performance guarantee under the prerequisite of guaranteed bandwidth quality. We take advantage of anycast to find the "best" multimedia server among a distributed server group in terms of bandwidth, the request will be submitted to the selected server, moreover, the selected server's neighbours' (all the servers with feasible paths) addresses are delivered to the selected server simultaneously. If the selected server can not guarantee the QoS for the request in terms of server performance, then a proposed QoS-Aware Server Load Deviation (QASLD) mechanism wiII be employed, which will deliver the request to one of its neighbours until there exists a suitable server that can guarantee the server performance for the request. Our experiments show that the proposed QASLD algorithm works well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel geographic routing protocol for multi-hop wireless sensor networks is presented. It exploits the broadcast nature of the wireless channel to enable on-demand cooperative relaying and leapfrogging for circumventing weak radio links. In order to achieve energy efficiency, a metric is introduced for next-hop selection that takes into account information on the residual battery energy, the geographical position of the sensor nodes, and the channel quality of the involved radio links when available. Performance results show that the completely decentralized protocol offers significant benefits by reducing the number of (re)transmissions required to reach the destination. This translates into network-wide energy savings that extend the network lifetime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studied a new type of network model; it is formed by the dynamic autonomy area, the structured source servers and the proxy servers. The new network model satisfies the dynamics within the autonomy area, where each node undertakes different tasks according to their different abilities, to ensure that each node has the load ability fit its own; it does not need to exchange information via the central servers, so it can carry out the efficient data transmission and routing search. According to the highly dynamics of the autonomy area, we established dynamic tree structure-proliferation system routing and resource-search algorithms and simulated these algorithms. Test results show the performance of the proposed network model and the algorithms are very stable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cluster computation has been used in the applications that demand performance, reliability, and availability, such as cluster server groups, large-scale scientific computations, distributed databases, distributed media-on-demand servers and search engines etc. In those applications, multicast can play the vital roles for the information dissemination among groups of servers and users. This paper proposes a set of novel efficient fault-tolerant multicast routing algorithms on hypercube interconnection of cluster computers using multicast shared tree approach. We present some new algorithms for selecting an optimal core (root) and constructing the shared tree so as to minimize the average delay for multicast messages. Simulation results indicate that our algorithms are efficient in the senses of short end-to-end average delay, load balance and less resource utilizations over hypercube cluster interconnection networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of performance modeling for large-scale heterogeneous distributed systems with emphases on multi-cluster computing systems. Since the overall performance of distributed systems is often depends on the effectiveness of its communication network, the study of the interconnection networks for these systems is very important. Performance modeling is required to avoid poorly chosen components and architectures as well as discovering a serious shortfall during system testing just prior to deployment time. However, the multiplicity of components and associated complexity make performance analysis of distributed computing systems a challenging task. To this end, we present an analytical performance model for the interconnection networks of heterogeneous multi-cluster systems. The analysis is based on a parametric family of fat-trees, the m-port n-tree, and a deterministic routing algorithm, which is proposed in this paper. The model is validated through comprehensive simulation, which demonstrated that the proposed model exhibits a good degree of accuracy for various system organizations and under different working conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When building a cost-effective high-performance parallel processing system, a performance model is a useful tool for exploring the design space and examining various parameters. However, performance analysis in such systems has proven to be a challenging task that requires the innovative performance analysis tools and methods to keep up with the rapid evolution and ever increasing complexity of such systems. To this end, we propose an analytical model for heterogeneous multi-cluster systems. The model takes into account stochastic quantities as well as network heterogeneity in bandwidth and latency in each cluster. Also, blocking and non-blocking network architecture model is proposed and are used in performance analysis of the system. The message latency is used as the primary performance metric. The model is validated by constructing a set of simulators to simulate different types of clusters, and by comparing the modeled results with the simulated ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor nodes are closely tied with their geographic location and their connectivity. In recent years many routing protocols have been developed to provide efficient strategy. But most of them are either focus on the geographic proximity or on connectivity. However in sparse network, Geographic routing would fail at local dead ends where a node has no neighbour closer to destination. In contrast, connectivity-based routing may result in non-optimal path and overhead management. In this paper we designed a scalable and distributed routing protocol, GeoConnect, which considers geographic proximity and connectivity for choosing next hop. In GeoConnecl, we construct a new naming system that integrates geographic and connectivity information into a node identification. We use dissimilarity function to compute the dissimilarity and apply a distributed routing algorithm to route packets. The experimental results show that GeoConnect routing provides robust and better performance than sole geographic routing or connectivity routing.