6 resultados para rotary instrumentation

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased demands placed on solution propulsion by programmed flow systems, such as sequential injection analysis, lab-on-value technology, bead injection and multi-commutation, has highlighted the inability of many conventional pumps to generate a smooth, consistent flow. A number of researchers have examined ways to overcome the inadvertent, uncontrolled pulsation caused by the mechanical action of peristaltic pumps. In contrast, we have developed instruments that exploit the characteristics of a reproducible pulsed flow of solution. In this paper, we discuss our instrumental approaches and some applications that have benefited from the use of a reproducible pulsed flow rather than the traditional linear flow approach. To place our approach in the context of the continuously developing field of flow analysis, an overview of other programmed flow systems is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LabVIEW®-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 × 10 -10 to 5 × 10 -6M) with a line of best fit of y = 1.05 x + 8.9164 (R2 = 0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 × 10-8M). The limit of detection (3 σ) was determined as 5 × 10-11 M morphine.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sample DNA amplification was done by using a novel rotary-linear motion polymerase chain reaction (PCR) device. A simple compact disc was used to create the stationary sample chambers which are individually temperature controlled. The PCR was performed by shuttling the samples to different temperature zones by using a combined rotary-linear movement of the disc. The device was successfully used to amplify up to 12 samples in less than 30 min with a sample volume of 5 μl. A simple spring loaded heater mechanism was introduced to enable good thermal contact between the samples and the heaters. Each of the heater temperatures are controlled by using a simple proportional–integral–derivative pulse width modulation control system. The results show a good improvement in the amplification rate and duration of the samples. The reagent volume used was reduced to nearly 25% of that used in conventional method.