8 resultados para rhamnose

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our proprietary preparation obtained by extraction of Chlorella pyrenoidosa cells, ONC-107 (Respondin™), was recently found to selectively boost antibody response to the influenza vaccine in a human clinical trial. Respondin™ is a potent stimulator of mouse B cell proliferation and an activator of macrophages. Bioactivity-guided resolution concluded that Respondin™ is composed of a mixture of immunostimulatory principles of different chemical nature. A combination of size exclusion, anion exchange and hydrophobic interaction chromatography revealed that the bulk of the immunostimulatory activity resides in polysaccharide/protein complexes with molecular masses larger than 100 kDa that are composed primarily of galactose, rhamnose and arabinose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extracellular naringinase (an enzyme complex consisting of α-L-rhamnosidase and β-D-glucosidase activity, EC 3.2.1.40) that hydrolyses naringin (a trihydroxy flavonoid) for the production of rhamnose and glucose was purified from the culture filtrate of Aspergillus niger 1344. The enzyme was purified 38-fold by ammonium sulphate precipitation, ion exchange and gel filtration chromatography with an overall recovery of 19% with a specific activity of 867 units per mg of protein. The molecular mass of the purified enzyme was estimated to be about 168 kDa by gel filtration chromatography on a Sephadex G-200 column and the molecular mass of the subunits was estimated to be 85 kDa by sodium dodecyl sulphate-Polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme had an optimum pH of 4.0 and temperature of 50 °C, respectively. The naringinase was stable at 37 °C for 72 h, whereas at 40 °C the enzyme showed 50% inactivation after 96 h of incubation. Hg2+, SDS, p-chloromercuribenzoate, Cu2+ and Mn2+ completely inhibited the enzyme activity at a concentration of 2.5–10 mM, whereas, Ca2+, Co2+ and Mg2+ showed very little inactivation even at high concentrations (10–100 mM). The enzyme activity was strongly inhibited by rhamnose, the end product of naringin hydrolysis. The enzyme activity was accelerated by Mg2+ and remained stable for one year after storage at −20 °C. The purified enzyme preparation successfully hydrolysed naringin and rutin, but not hesperidin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

α-l-Rhamnosidase (EC 3.2.1.40) is an enzyme that catalyzes the cleavage of terminal rhamnoside groups from naringin to prunin and rhamnose. In this study, a His-tag was genetically attached to the rhamnosidase gene ramA from Clostridium stercorarium to facilitate its purification from Escherichia coli BL21 (DE3) cells containing the pET-21d/ramA plasmid. Immobilized metal-chelate affinity chromatography (IMAC) resulted in one-step purification of N-terminally His-tagged recombinant rhamnosidase (N-His-CsRamA) which was immobilized in Ca2+ alginate (3%) beads. The optimum pH levels of the free and immobilized recombinant rhamnosidase were found to be 6.0 and 7.5, and the optimum temperature 55 and 60 °C respectively. At 50 °C, the free enzyme was relatively stable and exhibited a less than 50% reduction in residual activity after 180 min of incubation. The free and immobilized enzymes achieved 76% and 67% hydrolysis of the naringin in Kinnow juice respectively. Immobilization of recombinant rhamnosidase enabled its reutilization up to 9 hydrolysis batches without an appreciable loss in activity. This result indicated that the His-tagged thermostable rhamnosidase could be prepared as described and may serve to illustrate an economical and commercially viable process for industrial application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern about the environment, food and feed shortages and hike in the price of petroleum have stimulated interest in new ways of producing biofuels. The interest is rapidly increasing towards converting agricultural wastes to commercially valuable products. Biofuels made from waste biomass can offer immediate and sustained greenhouse gas advantages. In this direction, we are focusing on Citrus processing waste, a byproduct of juice manufacture, which contains high amount of flavonoids and polysaccharides. There is a considerable industrial interest in the enzymatic transformation of flavonoids to hydrolysis products; that offers a pathway to bio-energy generation. Rhamnosidase of bacterial origin are very few and thus are potentially subject for research.

Staphylococcus xylosus, Gram positive cocci, a nonpathogenic member of CNS family, isolated from soil was used to produce α-L-rhamnosidase. This new strain, so far unknown for the production of α-L-Rhamnosidase, was identified and characterized as Staphyloccocus sp. through biochemical tests and 16S DNA sequence analysis. Effect of various medium and process parameters like pH, temperature, aeration and agitation rates and inducer concentration were studied. Further, the enzyme activity was enhanced by adding the inducer and divalent metal ion to the optimised fermentation medium. We have recovered important sugars “rhamnose” and “galacturonic acid” from the processed waste which would be utilized for ethanol production. This presentation will summarize current efforts to develop an enzymatic treatment which would facilitate the economical processing of citrus waste for bioenergy generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The citrus fruit processing industry generates substantial quantities of waste rich in phenolic substances, which is a valuable natural source of polyphenols (flavonoids) such as naringin and its disposal is becoming a major problem. In the US alone, the juice processing of oranges and grapefruit generates over 5 Mt of citrus waste every year. In the case of India, about 2.15 Mt of citrus peel out of 6.28 Mt of citrus fruits are produced yearly from citrus juice processing. In case of Australia, about 15-40% of citrus peel waste is generated by processing of citrus fruit (0.85 Mt). Thus Isolation of functional compounds (mostly flavanoids) and their further processing can be of interest to the food and pharmaceutical industry. This peel is rich in naringin and may be used for rhamnose production by utilizing α-L-rhamnosidase (EC 3.2.1.40), an enzyme that catalyzes the cleavage of terminal rhamnosyl groups from naringin to yield prunin and rhamnose. We recently purified recombinant α-L-rhamnosidase from E. coli cells using immobilized metal-chelate affinity chromatography (IMAC) and used it for naringin hydrolysis. The purified enzyme established hydrolysis of naringin extracted from citrus peel and thus endorses its industrial applicability for producing rhamnose. Infrared (IR) spectroscopy confirmed molecular characteristics of naringin extracted from citrus peel waste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large amounts of Citrus peel (rich in poly-phenolic compounds) are generated as a by-product of the juice processing industry. Development of alternative, higher valued products utilizing peel waste from grapefruit, oranges, Valencia and other citrus fruit would benefit citrus juice processors by providing them with means to profitably process their peel waste and to avoid environmentally hazardous dumping. Citrus peel waste [CPW, comprised of peel, membranes and juice vesicles] contains a high level of polyphenols and has been used for the production of animal feed, single-cell protein, fibre, enzyme(s), immobilization support & bio-sorbent for heavy metal removal. Naringin (a major tri-hydroxy flavonoid glycoside) is available in large amounts in citrus peel, processed juice and can be extracted from citrus peel waste1. The extracted naringin is further hydrolysed by rhamnosidase to produce D-rhamnose for the production of ethanol and other fermentation products. We have produced a recombinant enzyme2 that has the ability to catalyse the cleavage of terminal rhamnoside groups from naringin to prunin and rhamnose. We have recovered important sugar “D-rhamnose” from the processed waste which would be utilized for ethanol production3. This presentation will summarize current efforts to develop an enzymatic treatment which would facilitate the economical processing of citrus waste for bioenergy generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naringinases has attracted a great deal of attention in recent years due to its hydrolytic activities which include the production of rhamnose, and prunin and debittering of citrus fruit juices. While this enzyme is widely distributed in fungi, its production from bacterial sources is less commonly known. Fungal naringinase are very important as they are used industrially in large amounts and have been extensively studied during the past decade. In this article, production of bacterial naringinase and potential biotechnological applications are discussed. Bacterial rhamnosidases are exotype enzymes that hydrolyse terminal non-reducing α-l-rhamnosyl groups from α-l-rhamnose containing polysaccharides and glycosides. Structurally, they are classified into family 78 of glycoside hydrolases and characterized by the presence of Asp567 and Glu841 in their active site. Optimization of fermentation conditions and enzyme engineering will allow the development of improved rhamnosidases for advancing suggested industrial applications.