14 resultados para retinoid X receptor

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR.

2. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells.

3. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401.

4. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb–drug interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CYP2B6 is mainly expressed in the liver that has been thought historically to play an insignificant role in human drug metabolism. However, increased interest in this enzyme has been stimulated by the discovery of polymorphic and ethnic differences in CYP2B6 expression, identification of additional substrates for CYP2B6, and evidence for co-regulation with CYP3A4. This paper updates our knowledge about the structure, function, regulation and polymorphism of CYP2B6. CYP2B6 can metabolise approximately 8% of clinically used drugs (n > 60), including cyclophosphamide, ifosfamide, tamoxifen, ketamine, artemisinin, nevirapine, efavirenz, bupropion, sibutramine, and propofol. CYP2B6 is one of the CYP enzymes that bioactivate several procarcinogens and toxicants. This enzyme also metabolizes arachidonic acid, lauric acid, 17beta-estradiol, estrone, ethinylestradiol, and testosterone. Typical substrates of CYP2B6 are non-planar molecules, neutral or weakly basic, highly lipophilic with one or two hydrogen-bond acceptors. The crystal structure of CYP2B6 has not been resolved, while several pharmacophore and homology models of human CYP2B6 have been reported. Human CYP2B6 is closely regulated by constitutive androstane receptor (CAR/NR1I3) which can activate CYP2B6 expression upon ligand binding. Pregnane X receptor and glucocorticoid receptor also play a role in the regulation of CYP2B6. Induction of CYP2B6 may partially explain some clinical drug interactions observed. For example, coadministered carbamazepine decreases the systemic exposure of bupropion. There is a wide interindividual variability in the expression and activity of CYP2B6. Such a large variability is probably due to effects of genetic polymorphisms and exposure to drugs that are inducers or inhibitors of CYP2B6. To date, at least 28 allelic variants and some subvariants of CYP2B6 (*1B through *29) have been described and some of them have been shown to have important functional impact on drug clearance and drug response. For example, the efavirenz plasma levels in African-American subjects with the CYP2B6 homozygous 516T/T genotype are approximately 3-fold higher than individuals carrying the homozygous G/G genotype. The CYP2B6 516T/T genotype is associated with 1.7-fold greater plasma levels of nevirapine in HIV-infected patients. Smokers with the 1459C>T (R487C) variant of CYP2B6 may be more vulnerable to abstinence symptoms and relapse following treatment with bupropion as a smoking cessation agent. Further studies in the structure, function, regulation and polymorphism of CYP2B6 are warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagon/vasoactive intestinal peptide family expressed throughout the nervous system, binds to the PACAP-specific G-protein-coupled receptor family members to promote both neuronal differentiation and survival. Although the PACAP receptor is known to activate its effector protein, adenylate cyclase (AC), and thus enhance cAMP generation, the molecular mechanism utilized by the receptor to activate AC is lacking. Here, we show that PACAP induces neurite outgrowth in PC12 cells by induction of translocation of the PACAP type 1 receptor (PAC1R) into caveolin-enriched Triton X-100-insoluble microdomains, leading to stronger PAC1R-AC interaction and elevated cAMP production. Moreover, we demonstrate that translocation of PAC1R is blocked by various treatments that selectively disrupt caveolae. As a result, intracellular cAMP level is decreased and consequently the PACAP-induced neurite outgrowth retarded. In contrast, addition of exogenous ganglioside GM1 to the cells shows the opposite effects. These results therefore identify the PACAP-induced translocation of its G-protein-coupled receptor into caveolae, where both AC and the regulating G-proteins reside, as the key molecular event in activating AC and inducing cAMP-mediated differentiation of PC12 cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess cooperation between G-CSF signals and C/EBP, we characterized Ba/F3 pro-B cell lines expressing C/EBPWT-ER and the G-CSF receptor (GCSFR). In these lines, GCSFR signals can be evaluated independent of their effect on C/EBP levels. G-CSF alone did not induce the MPO, NE, LF, or PU.1 RNAs, and C/EBPWT-ER alone stimulated low-level MPO and high-level PU.1 expression. Simultaneous activation of the GCSFR and C/EBPWT-ER markedly increased MPO and NE induction at 24 h, and LF mRNA was detected at 48 h. G-CSF did not increase endogenous GCSFR, endogenous C/EBP or exogenous C/EBPWT-ER levels, and C/EBPWT-ER did not induce endogenous or exogenous GCSFR. Several GCSFR mutants were also co-expressed with C/EBPWT-ER. Mutation of all four cytoplasmic tyrosines prevented NE induction but enhanced MPO induction. Mutation of Y704 was required for increased MPO induction. Consistent with this finding, removing IL-3 without G-CSF addition enabled MPO, but not NE, induction by C/EBPWT-ER. GCSFR signals or related signals from other receptors may cooperate with C/EBP to direct differentiation of normal myeloid stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somatostatin, originally identified as a peptide involved in neurotransmission, functions as an inhibitor of multiple cellular responses, including hormonal secretion and proliferation. Somatostatin acts through activation of G-protein-coupled receptors of which five subtypes have been identified. We have recently established that human CD34/c-kit expressing hematopoietic progenitors and acute myeloid leukemia (AML) cells exclusively express SSTR2. A major mechanism implicated in the antiproliferative action of somatostatin involves activation of the SH2 domain-containing protein tyrosine phosphatase SHP-1. While 0.1-1 x 10(-9) M of somatostatin, or its synthetic stable analog octreotide, can inhibit G-CSF-induced proliferation of AML cells, little or no effects are seen on GM-CSF- or IL-3-induced responses.
MATERIALS AND METHODS: To study the mechanisms underlying the antiproliferative responses of myeloblasts to somatostatin, clones of the IL-3-dependent murine cell line 32D that stably express SSTR2 and G-CSF receptors were generated. RESULTS: Similar to AML cells, octreotide inhibited G-CSF-induced but not IL-3-induced proliferative responses of 32D[G-CSF-R/SSTR2] cells. Somatostatin induced SHP-1 activity and inhibited G-CSF-induced, but not IL-3-induced, activation of the signal transducer and activator of transcription proteins STAT3 and STAT5.
CONCLUSION: Based on these data and previous results, we propose a model in which recruitment and activation of the tyrosine phosphatase SHP-1 by SSTR2 is involved in the selective negative action of somatostatin on G-CSF-R signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most severe congenital neutropenia (SCN) cases possess constitutive neutrophil elastase mutations; a smaller cohort has acquired mutations truncating the granulocyte colony-stimulating factor receptor (G-CSF-R). We have described a case with constitutive extracellular G-CSF-R mutation hyporesponsive to ligand. Here we report two independent acquired G-CSF-R truncation mutations and a novel constitutive neutrophil elastase mutation in this patient. Co-expression of a truncated receptor chain restored STAT5 signalling responses of the extracellular G-CSF-R mutant, while constitutively-active STAT5 enhanced its proliferative capacity. These data add to our knowledge of SCN and further highlight the importance of STAT5 in mediating proliferative responses to G-CSF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the α4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca2+ and Sr2+ force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa50 - pSr50) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate risk for neuroticism due to the joint action of low maternal care and compromised mesocorticolimbic ‘reward’ system function linked to a variable number tandem repeat (VNTR) in the dopamine 4 receptor gene (DRD4). Data were drawn from the Victorian Adolescent Health Cohort Study, a longitudinal study of the health and well-being of 2,000 young Australians followed from adolescence to young adulthood across 8 waves from 14- to 28-years. Genetic risk was defined by carriage of at least one copy of the 7-repeat allele or derivative alleles 5, 6, and 8 (labeled 7R+). Neuroticism was assessed in adolescence and young adulthood. We observed an approximately fourfold increase in the odds of reporting neurotic symptoms in carriers of the 7R+ disposition who reported low maternal care compared with non-carriers who reported high maternal care. The percentage of risk attributable to mechanisms in which both factors played a role was 35%. Findings are discussed in terms of implications for prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new ligand, [Fc(cyclen)2] (5) (Fc=ferrocene, cyclen=1,4,7,10-tetraazacyclododecane), and corresponding ZnII complex receptor, [Fc{Zn(cyclen)(CH3OH)}2](ClO4)4 (1), consisting of a ferrocene moiety bearing one ZnII-cyclen complex on each cyclopentadienyl ring, have been designed and prepared through a multi-step synthesis. Significant shifts in the 1H NMR signals of the ferrocenyl group, cf. ferrocene and a previously reported [Fc{Zn(cyclen)}]2+ derivative, indicated that the two ZnII-cyclen units in 1 significantly affect the electronic properties of the cyclopentadienyl rings. The X-ray crystal structure shows that the two positively charged ZnII-cyclen complexes are arranged in a trans like configuration, with respect to the ferrocene bridging unit, presumably to minimise electrostatic repulsion. Both 5 and 1 can be oxidized in 1:4 CH2Cl2/CH3CN and Tris-HCl aqueous buffer solution under conditions of cyclic voltammetry to give a well defined ferrocene-centred (Fc0/+) process. Importantly, 1 is a highly selective electrochemical sensor of thymidilyl(3′-5′)thymidine (TpT) relative to other nucleobases and nucleotides in Tris-HCl buffer solution (pH 7.4). The electrochemical selectivity, detected as a shift in reversible potential of the Fc0/+ component, is postulated to result from a change in the configuration of bis(ZnII-cyclen) units from a trans to a cis state. This is caused by the strong 1:1 binding of the two deprotonated thymine groups in TpT to different ZnII centres of receptor 1. UV-visible spectrophotometric titrations confirmed the 1:1 stoichiometry for the 1:TpT adduct and allowed the determination of the apparent formation constant of 0.89±0.10×106 M−1 at pH 7.4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glutamate system including N-methyl-d-aspartate (NMDA) affects synaptic formation, plasticity and maintenance. Recent studies have shown a variable (GT)n polymorphism in the promoter region of the NMDA subunit gene (GRIN2A) and a length-dependent inhibition of transcriptional activity by the (GT)n repeat. In the present study, we examined whether the GRIN2A polymorphism is associated with regional brain volume especially in medial temporal lobe structures, in which the NMDA-dependent synaptic processes have been most extensively studied. Gray matter regions of interest (ROIs) for the bilateral amygdala and hippocampus were outlined manually on the magnetic resonance images of 144 healthy individuals. In addition, voxel-based morphometry (VBM) was conducted to explore the association of genotype with regional gray matter volume from everywhere in the brain in the same sample. The manually measured hippocampal and amygdala volumes were significantly larger in subjects with short allele carriers (n = 89) than in those with homozygous long alleles (n = 55) when individual differences in intracranial volume were accounted for. The VBM showed no significant association between the genotype and regional gray matter volume in any brain region. These findings suggest that the functional GRIN2A (GT)n polymorphism could weakly but significantly impact on human medial temporal lobe volume in a length-dependent manner, providing in vivo evidence of the role of the NMDA receptor in human brain development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adipocyte-derived cytokine leptin acts as a metabolic switch, connecting the body's metabolism to high-energy consuming processes such as reproduction and immune responses. We here provide genetic and biochemical evidence that the metabolic and immune functions of leptin can be uncoupled at the receptor level. First, homozygous mutant fatt/fatt mice carry a spontaneous splice mutation causing deletion of the leptin receptor (LR) immunoglobulin-like domain (IGD) in all LR isoforms. These mice are hyperphagic and morbidly obese, but display only minimal changes in size and cellularity of the thymus, and cellular immune responses are unaffected. These animals also displayed liver damage in response to concavalin A comparable to wild-type and heterozygous littermates. Second, treatment of healthy mice with a neutralizing nanobody targeting IGD induced weight gain and hyperinsulinaemia, but completely failed to block development of experimentally induced autoimmune diseases. These data indicate that leptin receptor deficiency or antagonism profoundly affects metabolism, with little concomitant effects on immune functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Koalas (Phascolarctos cinereus), an iconic Australian marsupial, are being heavily impacted by the spread of Chlamydia pecorum, an obligate intracellular bacterial pathogen. Koalas vary in their response to this pathogen, with some showing no symptoms, while others suffer severe symptoms leading to infertility, blindness or death. Little is known about the pathology of this disease and the immune response against it in this host. Studies have demonstrated that natural killer (NK) cells, key components of the innate immune system, are involved in the immune response to chlamydial infections in humans. These cells can directly lyse cells infected by intracellular pathogens and their ability to recognise these infected cells is mediated through NK receptors on their surface. These are encoded in two regions of the genome, the leukocyte receptor complex (LRC) and the natural killer complex (NKC). These two families evolve rapidly and different repertoires of genes, which have evolved by gene duplication, are seen in different species. METHODS: In this study we aimed to characterise genes belonging to the NK receptor clusters in the koala by searching available koala transcriptomes using a combination of search methods. We developed a qPCR assay to quantify relative expression of four genes, two encoded within the NK receptor cluster (CLEC1B, CLEC4E) and two known to play a role in NK response to Chalmydia in humans (NCR3, PRF1). RESULTS: We found that the NK receptor repertoire of the koala closely resembles that of the Tasmanian devil, with minimal genes in the NKC, but with lineage specific expansions in the LRC. Additional genes important for NK cell activity, NCR3 and PRF1, were also identified and characterised. In a preliminary study to investigate whether these genes are involved in the koala immune response to infection by its chlamydial pathogen, C. pecorum, we investigated the expression of four genes in koalas with active chlamydia infection, those with past infection and those without infection using qPCR. This analysis revealed that one of these four, CLEC4E, may be upregulated in response to chlamydia infection. CONCLUSION: We have characterised genes of the NKC and LRC in koalas and have discovered evidence that one of these genes may be upregulated in koalas with chlamydia, suggesting that these receptors may play a role in the immune response of koalas to chlamydia infection.