83 resultados para renewable energy systems

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The charging of an undivided cerium–zinc redox battery by various current waveforms some of which mimic the output of renewable energy (solar, wind, tidal, biofuel burning) to electricity transducers is considered in this work, where the battery operates through diffusion-only conditions, and is discharged galvanostatically. Under reasonable assumption, the mathematical model developed enables the observation that the performance characteristic of the cells charged with a constant power input differentiates between the various current–charge waveforms, with cell geometry and electrode kinetics playing subtle, but significant, roles; in particular, high efficiency is observed for sunlight-charged batteries which are thin and suffer no corrosion of the sacrificial electrode, and which have already experienced a charge–discharge cycle. The performance characteristics of the systems are interpreted in the light of consequences for smart grid realisation, and indicate that, for a constant power input, the most matched renewable is biofuel burning with a current output that linearly increases with time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND OR CONTEXT: Current work in remote laboratories focuses on student interaction in a setting that can be at times disconnected from real world systems. Laboratories have been developed that show models of a working system, focusing on a single aspect, but very few laboratories allow the user to see the outputs of a working system that interacts with the real world as would be expected outside of a laboratory setting. It was aimed with this paper to show a design of a novel approach to building a remote laboratory that would be able to interact with a fully functional renewable energy system, and to show the students the outputs of such a system in real time. It allows for the user to be presented with information in a new context.
PURPOSE OR GOAL: With this research it is hoped to achieve a remote laboratory that will be able to present students with the data from a renewable energy system live, as it is generated as well as all the logged date generated. It is aimed with this novel approach to building a remote laboratory to assist the students in learning about renewable energy systems while allowing the student to access real data, instead of simulated data. Links to increased motivation due to realism in data given as well as change in student perception on learning in remote laboratories mean that a system such as this could change the way students approach learning about renewable energy generation systems. This will require further research however.
APPROACH: This remote laboratory required gathering data from an already established system. The live results were not recorded, and a log file was generated daily, however this was not fast enough to give to students as it was generated, so a system that could maintain communication between all systems, while also polling for data itself was required. In addition to this, the system had to communicate to a server that would give students access to the live data. The server was set up in such a way that students were not required to install any programs on their computer, multiple students could access the data at any given time, and a wide range of devices, including mobile devices, could all access the remote laboratory.
DISCUSSION: Key outcomes include the design of the remote laboratory, including screenshots of data acquisition from the renewable energy system from different devices. The design is split into two sections, one covering the server side architecture while another covers the data acquisition architecture. A very brief discussion on students’ initial interaction is also undertaken.
RECOMMENDATIONS/IMPLICATIONS/CONCLUSION: Research has shown that the degree of realism in remote education can have an effect on students’ behaviors/motivation in a remote laboratory. By allowing students to knowingly access a real system that is currently being used to generate power from renewable energy sources, the methods and motivations that students use when approaching renewable energy systems may change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Borough of Queenscliffe has identified the importance of reducing its greenhouse gas emissions and aims to become a carbon zero municipality by 2020. For a house, suburb or town to become carbon neutral ideally it produces an equivalent amount of energy from renewable resources to that which it consumes. By increasing the number of solar systems, both photovoltaic (PV) and hot water, in the residential sector, greenhouse gas emissions will be reduced. The number of solar systems located in the Borough of Queenscliffe has been estimated and a database of these systems has been created, including the size and panel orientation. The energy generated by each solar system, in addition to the reductions in greenhouse gas emissions, has been calculated for an average year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although Renewable energy applications in Middle East countries were started in the middle of the seventies, they have only gained momentum in the last ten years. Considering the past gained experience, a proposed national Renewable Energy (RE) plan aims toward bringing RE into the main stream of the national energy supply system with a target contribution of 10% of the electricity demand by the year 2020. The proposed plan calls for a wide spectrum of renewable energy applications. This paper will highlight renewable energy applications in Middle East countries, the gained experience, the RE resources, and the future prospects for the utilization of RE recourses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to reduce GHG emission level, most of the countries in the world targeting towards green energy that is power generation from RE (renewable energy) sources. In this paper, it is considered to study prospects of RE sources in particular, solar and wind in Victoria State which are abundant as compared to other sources of renewable. The wind and solar energy feasibility study and sensitivity analysis has been done for Victoria with the aid of HOMER (hybrid optimization model of electric renewable) simulation software. From the study, it has clearly evicted that wind energy combinational HPS (hybrid power system) has more contribution, and high potential than solar PV (photovoltaic) systems for a particular location. This study also investigates the influences of energy storage in the proposed HPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous usage of fossil fuels and other conventional resources to meet the growing demand has resulted in in-creased energy crisis and greenhouse gas emissions. Hence, it is essential to use renewable energy sources for more reliable, effective, sustainable and pollution free transmission and distribution networks. Therefore, to facilitate large-scale integration of renewable energy in particular wind and solar photovoltaic (PV) energy, this paper presents the feasibility analysis for semi-arid climate and finds the most suitable places in North East region of Victoria for re-newable energy generation. For economic and environmental analysis, Hybrid Optimization Model for Electric Re-newables (HOMER) has used to investigate the prospects of wind and solar energy considering the Net Present Cost (NPC), Cost of Energy (COE) and Renewable fraction (RF). Six locations are selected from North East region of Victo-ria and simulations are performed. From the feasibility analysis, it can be concluded that Mount Hotham is one of the most suitable locations for wind energy generation while Wangaratta is the most suitable location for solar energy generation. Mount Hotham is also the best suitable locations in North East region for hybrid power systems i.e., com-bination of both wind and solar energy generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The penetration of intermittent renewable energy sources (IRESs) into power grids has increased in the last decade. Integration of wind farms and solar systems as the major IRESs have significantly boosted the level of uncertainty in operation of power systems. This paper proposes a comprehensive computational framework for quantification and integration of uncertainties in distributed power systems (DPSs) with IRESs. Different sources of uncertainties in DPSs such as electrical load, wind and solar power forecasts and generator outages are covered by the proposed framework. Load forecast uncertainty is assumed to follow a normal distribution. Wind and solar forecast are implemented by a list of prediction intervals (PIs) ranging from 5% to 95%. Their uncertainties are further represented as scenarios using a scenario generation method. Generator outage uncertainty is modeled as discrete scenarios. The integrated uncertainties are further incorporated into a stochastic security-constrained unit commitment (SCUC) problem and a heuristic genetic algorithm is utilized to solve this stochastic SCUC problem. To demonstrate the effectiveness of the proposed method, five deterministic and four stochastic case studies are implemented. Generation costs as well as different reserve strategies are discussed from the perspectives of system economics and reliability. Comparative results indicate that the planned generation costs and reserves are different from the realized ones. The stochastic models show better robustness than deterministic ones. Power systems run a higher level of risk during peak load hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the impact of large penetration of wind power on the transient stability through a dynamic evaluation of the critical clearing times (CCTs) by using intelligent agent-based approach. A decentralised multi-agent-based framework is developed, where agents represent a number of physical device models to form a complex infrastructure for computation and communication. They enable the dynamic flow of information and energy for the interaction between the physical processes and their activities. These agents dynamically adapt online measurements and use the CCT information for relay coordination to improve the transient stability of power systems. Simulations are carried out on a smart microgrid system for faults at increasing wind power penetration levels and the improvement in transient stability using the proposed agent-based framework is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book presents different aspects of renewable energy integration, from the latest developments in renewable energy technologies to the currently growing smart grids. The importance of different renewable energy sources is discussed, in order to identify the advantages and challenges for each technology. The rules of connecting the renewable energy sources have also been covered along with practical examples. Since solar and wind energy are the most popular forms of renewable energy sources, this book provides the challenges of integrating these renewable generators along with some innovative solutions. As the complexity of power system operation has been raised due to the renewable energy integration, this book also includes some analysis to investigate the characteristics of power systems in a smarter way. This book is intended for those working in the area of renewable energy integration in distribution networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable energy advocates often invoke the goal of sustainability in order to promote their cause. Most people agree that the energy supply for a sustainable world should be based on safe, clean and renewable forms of energy. However, sustainability is a much over-used word to the point where it has become almost meaningless. This paper argues that we need to reaffirm the meaning of sustainability and use its defining principles to guide our advocacy and practice. If we ignore these principles, we run the danger of generating unrealistic expectations and mistrust, and becoming involved in practice that is questionable from a sustainability perspective. On the other hand, if we use the principles of sustainability to guide our practice and advocacy, our goals will be more achievable, our credibility will increase and our practice will become more ethical. This paper uses one model of sustainability to evaluate examples of renewable energy advocacy and practice.