93 resultados para refined grain

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT) is a mechanical peening process used to generate ultrafine grain surfaces on a metal. SMAT was carried out on pure magnesium using different attrition media (zirconia [ZiO2], alumina [Al2O3], and steel balls) to observe the effect on microstructure, surface residual stress, surface composition, and corrosion. Surface contamination from SMAT was characterized using glow discharge optical emission spectroscopy (GDOES). The SMAT process produced a refined grain structure on the surface of Mg but resulted in a region of elemental contamination extending ~10 μm into the substrate, regardless of the media used. Consequently, SMAT-treated surfaces showed an increased corrosion rate compared to untreated Mg, primarily through increased cathodic kinetics. This study highlights the issue of contamination resulting from the SMAT process, which is a penalty that accompanies the significant grain refinement of the surface produced by SMAT. This must be considered if attempting to exploit grain refinement for improving corrosion resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminium-titanium (Al/Ti) composite sheets were fabricated via asymmetric accumulative roll bonding (AARB), which capitalises on additional shear to enhance plastic deformation. Multi-layers of Al alloy (AA1050) and commercially-pure Ti sheets were alternatively stacked and rolled-bonded with varied roll diameter ratios (dr) ranging from 1 to 2, for up to four passes. Annealing of selected composite sheets was subsequently carried out at 600°C for 24h to compare the rates of solid-state diffusion reactions between Al and Ti components. Mechanical tests revealed that both tensile strength and ductility of the sheets increase systematically with dr. The microstructures and the Al/Ti interfaces of the sheets were analysed in detail using TEM, SEM and FIB techniques. It is shown that not only does AARB lead to a more refined grain size of the Al matrix but also it promotes the development of a nanostructured surface layer on Ti that comprises crystallites of 50-100nm in size, which is otherwise absent in the case of symmetric ARB (i.e. dr=1). The AARB-processed sheets exhibit a larger thickness of the interdiffusion layer at the Al/Ti interfaces than the counterparts processed via the symmetric ARB route, the difference being in excess of 15%. The effects and the implications of AARB processing on mechanical behaviour and diffusion kinetics are discussed with respect to the microstructural evolutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within each columnar grain of a metallic film, the resistance to dislocation glide varies in function of the orientation of the slip plane with regard to the grain long axis. Plastic slip is impeded across grain boundaries and this contributes to the anisotropy of the overall mechanical response. A simplified (Taylor-type) crystal plasticity model is proposed that accounts for such effect of grain shape on the slip system selection. Assuming that dislocation density gradients are normal to the grain boundaries, backstresses developed at the onset of plasticity are estimated based on two definitions of the effective grain boundary spacing ‘‘seen’’ by individual slip systems. The first one reduces to the mean area-to-perimeter ratio of cross-sections of the grain cut parallel to the slip plane. Closed-form expressions of the average backstresses developed inside grains with spheroidal shapes are introduced in the crystal hardening law. The model reproduces the very high plastic anisotropy of electro-deposited pure iron with a strong c-fiber and a refined columnar grain structure [Yoshinaga, N., Sugiura, N., Hiwatashi, S., Ushioda, K., Kada, O., 2008. Deep drawability of electro-deposited pure iron having an extremely sharp h111i//ND texture. ISIJ Int. 48, 667–670]. It also provides valid estimates of the texture development and the influence of grain size on the yield strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of grain size on the deformation behaviour in the fenite region of a Titanium stabilized Interstitial Free steel was investigated by hot torsion. The initial work hardening regime is followed by a softening regime where a broad peak stress develops. The peak stress and the stress at final strain were relatively insensitive to grain size. However, at low values of the Zener-Hollomon parameter, the strain to the peak stress was strongly dependent on the grain size. A series of microstructural parameters were examined to explain these observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the grain size on the flow stress of extruded Mg–3Al–1Zn tested in compression is examined. Samples with grain sizes varying between 3 and 23 μm were prepared by altering the extrusion conditions. Compression testing of the extruded bar was carried out at temperatures between ambient and 200 °C. Twinning dominated the deformation at lower temperatures but this gave way to slip dominated flow when the temperature was raised. For tests carried out at intermediate temperatures, a similar transition was observed when the grain size was reduced. The transition was accompanied by a change in flow curve shape and Hall–Petch slope. The peak stresses achieved when twinning dominated the deformation were up to 100 MPa greater than those seen when slip dominated the flow. Critical grain sizes marking the twinning–slip transition were identified and these are described in terms of the deformation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the grain size on the deformation of Mg–3Al–1Zn was examined in compression at 300 °C. At low strains the flow stress increases with increasing grain size. This is interpreted in terms of dynamic recrystallization. Empirical models of dynamic recrystallization are developed and employed to generate a microstructure map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of grain size on the deformation of extruded Mg-3Al-1Zn tested in tension at temperatures between room temperature and 300°C is investigated. The results enable estimation of the deformation conditions for the transition from slip to twinning dominated flow and for the initiation and completion of dynamic recrystallization. A map illustrating these critical parameters is constructed and it is shown that the operating conditions of the common wrought processes straddle key transitions in microstructure behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free (IF) steel was investigated using hot torsion. The initial work hardening regime is followed by the development of a broad stress peak after which work softening occurs. The hypothetical saturation stress (Estrin–Mecking model) and the stress at final strain were relatively insensitive to grain size. However, the strain to the peak stress was strongly dependent on the grain size at low values of the Zener–Hollomon parameter. A simple phenomenological approach, using a combined Estrin–Mecking model and an Avrami type equation, was used to model the flow curves. The hypothetical saturation stress, the stress at final strain and the strain to peak stress were modelled using three different hyperbolic sine laws. A comparison with independent data from the literature shows that the apparent activation energy of deformation determined in this work (Q=372 kJ/mol) can be used to rationalize the steady-state stress in compression data found in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution during compression (at 350°C and a strain rate of 0.01s-1) was examined for magnesium alloy AZ31 received in the "as-cast" condition. It was revealed that at low strains, many twins are produced and dynamically recrystallized (DRX) grains form as a necklace along pre-existing grain boundaries. At higher strains, DRX stagnates, most likely due to the accommodation of deformation in the DRX fraction of the material. It was also observed that twin boundaries act as sites for the nucleation of DRX grains. The analysis was repeated for samples pre-compressed to a strain of 0.15 at room temperature prior to the hot deformation step. The idea of these additional tests was to increase the degree of twinning and therefore the density of sites for the nucleation of DRX. It was found that statically recrystallized (SRX) grains developed at the twins during heating to the test temperature. When these samples were deformed, the peak flow stress was reduced by approximately 20% and the development of DRX was enhanced. This can be attributed to the accelerated nucleation of DRX in the refined SRX structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of ultrafine grained microstructures in steels has received considerable attention in recent times. In many cases the aim is to produce high strength structural steels with minimal alloying. It is well established that for an equiaxed ferrite with a uniform dispersion of second phase, both the strength and toughness will be markedly improved if the grain size can be reduced to 1-2 μm, from the typical range of 5-10 μm. Means of achieving this through dynamic strain induced transformation are examined here, following a brief overview of some of the key issues encountered when attempting to refine the austenite in existing mill configurations. A number of deformation microstructure maps are developed to aid the discussion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.