122 resultados para recrystallization

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general relationship between the kinetics of dynamic and static recrystallization is developed. It is predicted that conventional dynamic recrystallization will occur whenever the deformation time exceeds the adjusted start time for static recrystallization. This approach is verified using data for austenite and lead. It is then applied to current and previous work on ferrite. The model provides support for the contention that conventional dynamic recrystallization occurs in low carbon ferrite if deformation is carried out at high temperatures and low strain rates. In the present work, which was carried out at 700 °C, evidence for dynamic recrystallization was observed for strain rates less than around 0.01 s−1. At higher strain rates, the model predicts a critical strain for the onset of dynamic recrystallization that exceeds the critical strain for the beginning of the recovery steady-state region. While the model allows dynamic recrystallization to begin in this region, the critical strain for its onset is expected to increase rapidly with increasing strain rate and decreasing temperature once steady state has been reached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures and textures of coarse grained cold rolled, partially recrystallized and fully recrystallized low carbon and interstitial free steel were examined by optical microscopy, scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The recrystallization textures of the two grades are markedly different, with the low carbon steel having a predominantly Goss {11O}<OOl> texture and the interstitial free steel having a <1ll>/1ND texture with a strong {III }<112> component. One possible explanation for the texture difference is that less severe localization of flow during deformation of interstitial free steels causes less Goss nuclei to be generated. While some support for this view is provided by the results presented in this paper, the results suggest that another mechanism may be at least partially responsible. Examination of micro
shear bands on the surface of pre-polished samples showed that a higher proportion of micro shear bands remained active at high rolling reductions in the low carbon steel, compared with the interstitial free grade. Regions of Goss orientation within bands that have ceased to operate rotate to
near-{ III }<112> orientations with further deformation. Consequently, the recrystallization texture of coarse grained interstitial free steels can be rationalized by a reduction in the availability of Goss nuclei and an increase in the availability of {Ill }<112> nuclei due to a "Goss to {Ill }<112>" rotation within micro shear bands that have ceased to operate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of magnesium AZ31 are examined following hot compression testing and annealing. The grain size, fraction dynamically recrystallized and, in a couple of cases, the crystallographic texture are reported. It was found that the progress of dynamic recrystallization is strongly sensitive to processing conditions but that the dynamically
recrystallized grain size was less sensitive to stress than in other metals. It was also found that, for structures containing between 80 and 95 % dynamic recrystallization, abnormal grain growth occurs during annealing. The crystallographic texture produced is also sensitive to the deformation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments were conducted to clarify the roles of grain size, solute carbon and strain in determining the recrystallization textures of cold-rolled and annealed steels. In the first experiment, samples of coarse-grained low-carbon (LC) and interstitial-free (IF) steels were cold-rolled to a 75% reduction in thickness. One sample from each steel was polished and cold-rolled an additional 5%, while the remaining samples were annealed for various times at 650°C. In the second experiment, three samples from a commercial LC steel sheet were rolled 70% at 300°C. Two of the samples were given a further rolling reduction of 5% of the original thickness, with one of the samples being given this additional reduction at 300°C and the other at room temperature. Goss recrystallization textures are strengthened by coarse initial grain sizes, the presence of solute carbon and rolling at a temperature where dynamic strain ageing occurs, but are weakened by additional rolling beyond a reduction of 70%, especially when this extra rolling is conducted at a temperature where dynamic strain ageing does not occur. Characterization of key features of the deformed and recrystallized steels using optical microscopy, scanning electron microscopy (SEM) and electron back-scatter diffraction (EBSD) supports a rationale for these effects based on the repeated activation and deactivation of shear bands and the influence of solute carbon and dynamic strain ageing on the operating life of the bands and the accumulation of strain within them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ideal starting condition for selective growth experiments is one having a layer of randomly-oriented nuclei adjacent to a matrix with negligible orientational variation but sufficient stored energy to promote growth. In practice, cutting or deformation processes are used in an attempt to approximate these ideal conditions, but the degree to which this is achieved has not been rigorously quantified. In this work, Fe-3wt%Si single crystals were cut or deformed using six different processes. The variation in texture with distance from the cut or deformed surface was measured using electron backscatter diffraction (EBSD) in a field emission gun scanning electron microscope (FEG-SEM) in order to assess the ability of each process to create conditions suitable for selective growth experiments. While grooving with a machine tool produced the best spread of orientations at the cut surface, the suitability of this process is diminished by the presence of a differently-textured deformed layer between the cut surface and the single crystal matrix. Grinding produced a less ideal distribution of orientations at the cut surface, but the presence of these orientations in a very thin layer adjacent to the matrix makes this process preferable for preparing crystals for selective growth experiments, provided the results are corrected for the deviation in the distribution of nuclei orientations from a random distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of grain size on the deformation of extruded Mg-3Al-1Zn tested in tension at temperatures between room temperature and 300°C is investigated. The results enable estimation of the deformation conditions for the transition from slip to twinning dominated flow and for the initiation and completion of dynamic recrystallization. A map illustrating these critical parameters is constructed and it is shown that the operating conditions of the common wrought processes straddle key transitions in microstructure behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 304 austenitic stainless steel was deformed using hot torsion to study the evolution of dynamic recrystallization (DRX). The initial nucleation of dynamically recrystallization occurred by the bulging of pre-existing high angle grain boundaries at a strain much lower than the peak strain. At the
peak stress, only a low fraction of the prior grain boundaries were covered with new DRX grains. Beyond the peak stress, new DRX grains formed layers near the initial DRX and a necklace structure was developed. Several different mechanisms appeared to be operative in the formation of new high angle boundaries and grains. The recrystallization behaviour after deformation showed a classic transition from strain dependent to strain independent softening. This occurred at a strain beyond the
peak, where the fraction of dynamic recrystallization was only 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is now considerable interest in the development of ultrafine grained steels with an average grain size of the order of 1µm. One of the methods with currently the greatest industrial interest is by dynamic strain induced transformation from austenite to ferrite. This involves deformation below the
equilibrium transformation temperature so that transformation occurs during the deformation. However, large strains are required to completely transform the microstructure during deformation. It is potentially possible to activate transformation during deformation then continue transformation
during subsequent cooling. It is shown that there are two critical strains: the first is where dynamic transformation commences and the second is the minimum strain for a fully ultrafine final microstructure after cooling to room temperature. The deformation and potential role of dynamic
recrystallization of the dynamically formed ferrite is also considered. Overall it is clear that for full industrial exploitation there is a need to understand and exploit the competing issues of nucleation, growth and recrystallization of the ferrite by both dynamic and static processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid method has been developed to determine recrystallization kinetics of Nb microalloyed steels by interrupted hot torsion test. The softening behaviour was achieved as a function of different processing parameters. The method clearly identified three regions, where the strain dependency of the recrystallization rate varied. Firstly, at large strains the rate of recrystallization was not a function of strain; this is generally ascribed to metadynamic recrystallization. At lower strains the time to 50% recrystallization showed a power low relationship with strain, characteristic of static recrystallization. A further break point exists on the time for 50% softening curve when strain induced precipitation occurs in the material. The onset of strain induced precipitation was at strains below the strain to the peak stress at temperatures below 900°C. The experimental results were used to estimate the time for 50% softening and to anticipate the onset of the strain induced precipitation for the alloy of this study. Grain refinement of the recrystallized austenite continued to strains significantly beyond the peak stress and beyond the static to metadynamic recrystallization rate transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid method was used to identify kinetics of the recrystallization for two IF (Interstitial Free) steels which have different phosphorous and boron contents. The static and metadynamic softening behaviour of the materials for a range of strain rates and temperatures were quantified. The critical strain for initiation of strain independent softening was estimated for the IF steels in respect to the time for 50 percent softening after deformation. The results showed that the strain for the initiation of strain independent softening (often referred to as metadynamic recrystallization) varies with the Zener Hollomon parameter. Classic static recrystallization was observed at strains below the strain independent softening for all processing conditions and the strain rate had a strong effect on the time for strain independent softening. Results also revealed that static and metadynamic recrystallization was delayed owing to the phosphorous and boron alloying elements. Hence, the large strain at above no-recrystallization temperature may be required for the early stage of Finishing Stands Unit (FSU) in hot strip rolling mills to initiate austenite grain refinement of phosphorous and boron added IF steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is proposed to quantify progress of dynamic recrystallization in polycrystalline metals during deformation. This approach utilises the stress–strain curve of the material to quantify the progress of dynamic softening. The outcome of this method showed a good agreement with experimental results for alloys of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model has been developed which describes the hot deformation and recrystallization behavior of austenite using a single internal variable: dislocation density. The dislocation density is incorporated into equations describing the rate of recovery and recrystallization. In each case no distinction is made between static and dynamic events, and the model is able to simulate multideformation processes. The model is statistically based and tracks individual populations of the dislocation density during the work-hardening and softening phases. After tuning using available data the model gave an accurate prediction of the stress–strain behavior and the static recrystallization kinetics for C–Mn steels. The model correctly predicted the sensitivity of the post deformation recrystallization behavior to process variables such as strain, strain rate and temperature, even though data for this were not explicitly incorporated in the tuning data set. In particular, the post dynamic recrystallization (generally termed metadynamic recrystallization) was shown to be largely independent of strain and temperature, but a strong function of strain rate, as observed in published experimental work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid method was used to study the effect of carbon content on the kinetics of post-deformation softening, t50, in Nb-steels. The hot deformation behaviour of austenite was not affected by carbon. However, the t50 was influenced by the carbon with different effects in different temperature regimes. At deformation temperatures above the non-recrystallization temperature, Tnr, carbon produced a small change in the softening behaviour. However, the t50 was significantly retarded with increasing carbon content at deformation temperatures lower than Tnr, due to Nb(C,N) precipitates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation and recrystallization behaviour of a range of Nb microalloyed steels has been studied using hot torsion. This work focuses on the change from strain dependent to strain independent recrystallization behaviour as a function of the alloy content, initial microstructure and deformation conditions. It is found that there is a complex interaction between deformation, recrystallization and strain induced precipitation, which has significant implications for controlled rolling in hot strip and plate mills. The data also revealed that the pre-existing precipitates did not influence the behaviour of post deformation softening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A readily evaluated condition for migration dynamic recrystallization is developed. It is based on the postulate that “the distance traversed by the boundary of a hypothetical growing grain in the time taken for the attainment of a recovery steady state must exceed the size of a critical nucleus”. A method for estimating the boundary mobility based on the kinetics of static recrystallization is also developed to facilitate evaluation of the condition. The derivation focuses first on developing an upper limit for the dynamically recrystallized grain size. This upper limit is only slightly higher than experimental values. The critical condition also agrees well with a limited set of experimental data. These data include the occurrence (and, in two cases, suppression) of dynamic recrystallization in Cu, Ni, Mg, α-Fe, γ-Fe and Al.