57 resultados para real power loss

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart micro-grids can produce 'renewable' energy and store them in power storage devices. Power loss, however, is a significant problem in power exchange among the micro-grids and between the macro-station and individual micro-grids. To optimally reduce the total power losses in such a power grid system, in this paper, a greedy coalition formation algorithm is proposed, which allows the macro-station to coordinate mutual power exchange among the micro-grids and between each micro-grid and the macro-station. Our algorithm optimizes the total power losses across the entire power grid, including the cost of charging and discharging power storage devices and power losses due to power transfers. The algorithm creates exchange pairs among the micro-grids, giving priority to pairs with higher power loss reduction per exchanged power unit. Through computer-based simulations, we demonstrate that the proposed approach significantly reduces the average power loss compared with the conventional noncooperative method. The simulations also demonstrate that the communications overhead of our proposal (due to negotiations aimed at forming coalitions) does not significantly affect the available communication resource. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because power generation of renewable resources are unstable and demands of the customers are time-varying, the supply power and demands of the customers are always unequal. To meet the demands of the customers, power is transmitted from primary power generation to secondary power generation. It will cause high power loss. To solve this problem, a distributed algorithm is proposed in this paper. By using the algorithm, the micro-grids are able to exchange power with their neighbors so as to minimize the total power losses of the smart grid. Moreover, communication overhead (bandwidth) is reduced, comparing with centralized algorithm. Through computer simulations, we demonstrate that the proposed algorithm can lead to near-optimal result for alleviating the average power loss per micro-grid and reduce the communication overhead significantly in contrast with the centralized approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been well documented that the consensus forecast from surveys of professional forecasters shows a bias that varies over time. In this paper, we examine whether this bias may be due to forecasters having an asymmetric loss function. In contrast to previous research, we account for the time variation in the bias by making the loss function depend on the state of the economy. The asymmetry parameter in the loss function is specified to depend on set state variables which may cause forecaster to intentionally bias their forecasts. We consider both the Lin–Ex and asymmetric power loss functions. For the commonly used Lin–Ex and Lin–Lin loss functions, we show the model can be easily estimated by least squares. We apply our methodology to the consensus forecast of real U.S. GDP growth from the Survey of Professional Forecasters. We find that forecast uncertainty has an asymmetric effect on the asymmetry parameter in the loss function dependent upon whether the economy is in expansion or contraction. When the economy is in expansion, forecaster uncertainty is related to an overprediction in the median forecast of real GDP growth. In contrast, when the economy is in contraction, forecaster uncertainty is related to an underprediction in the median forecast of real GDP growth. Our results are robust to the particular loss function that is employed in the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly un-balance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although the thermodynamic advantages of using solar energy to replace the bleed off steam in the regeneration system of Rankine cycle coal fired power stations has been proven theoretically, the practical techno/economic feasibility of the concept has yet to be confirmed relative to real power station applications. To investigate this concept further, a computer modelling software “THERMSOLV” was developed by Deakin University researchers, together with the support of the Victorian power industry and Australian Research Council (ARC). This newly developed software simulates the steam cycle to assess the techno/economic merit of the solar aided concept for various power station structures, locations and local electricity market conditions. Two case studies, one in Victoria Australia and one in Yunnan Province, China, have been carried out to show the application of the software. This paper reports the structure and functions of the software, and the results of the two case studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although the thermodynamic advantages of using solar energy to replace the bled off steam in the regeneration system of Rankine cycle coal fired power stations has been proven theoretically, the practical techno/economic feasibility of the concept has yet to be confirmed relative to real power station applications. To investigate this concept further, computer modelling software “THERMSOLV” was specifically developed for this project at Deakin University, together with the support of the Victorian power industry and Australian Research Council (ARC). This newly developed software simulates the steam cycle to assess the techno/economic merit of the solar aided concept for various power station structures, locations and local electricity market conditions. Two case studies, one in Victoria Australia and one in Yunnan Province, China, have been carried out with the software. Chapter one of this thesis defines the aims and scope of this study. Chapter two details the literature search in the related areas for this study. The thermodynamic concept of solar aid power generation technology has been described in chapter three. In addition, thermodynamic analysis i.e. exergy/availability has been described in this chapter. The “Thermosolv” software developed in this study is detailed in chapter four with its structure, functions and operation manual included. In chapter five the outcomes of two case studies using the “Thermosolv” software are presented, with discussions and conclusions about the study in chapters 6 and 7 respectfully. The relevant recommendations are then made in chapter eight.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a distributed generator (DG) placement methodology based on newly defined term reactive power loadability. The effectiveness of the proposed planning is carried out over a distribution test system representative of the Kumamoto area in Japan. Firstly, this paper provides simulation results showing the sensitivity of the location of renewable energy based DG on voltage profile and stability of the system. Then, a suitable location is identified for two principal types DG, i. e., wind and solar, separately to enhance the stability margin of the system. The analysis shows that the proposed approach can reduce the power loss of the system, which in turn, reduces the size of compensating devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Partial shading is an unavoidable condition which significantly reduces the efficiency and stability of a photovoltaic (PV) system. When partial shading occurs the system has multiple-peak output power characteristics. In order to track the global maximum power point (GMPP) within an appropriate period a reliable technique is required. Conventional techniques such as hill climbing and perturbation and observation (P&O) are inadequate in tracking the GMPP subject to this condition resulting in a dramatic reduction in the efficiency of the PV system. Recent artificial intelligence methods have been proposed, however they have a higher computational cost, slower processing time and increased oscillations which results in further instability at the output of the PV system. This paper proposes a fast and efficient technique based on Radial Movement Optimization (RMO) for detecting the GMPP under partial shading conditions. The paper begins with a brief description of the behavior of PV systems under partial shading conditions followed by the introduction of the new RMO-based technique for GMPP tracking. Finally, results are presented to demonstration the performance of the proposed technique under different partial shading conditions. The results are compared with those of the PSO method, one of the most widely used methods in the literature. Four factors, namely convergence speed, efficiency (power loss reduction), stability (oscillation reduction) and computational cost, are considered in the comparison with the PSO technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes an effective VAR planning based on reactive power margin for the enhancement of dynamic voltage stability in distribution networks with distributed wind generation. The analysis is carried over a distribution test system representative of the Kumamoto area in Japan. The detailed mathematical modeling of the system is also presented. Firstly, this paper provides simulation results showing the effects of composite load on voltage dynamics in the distribution network through an accurate time-domain analysis. Then, a cost-effective combination of shunt capacitor bank and distribution static synchronous compensator (D-STATCOM) is selected to ensure fast voltage recovery after a sudden disturbance. The analysis shows that the proposed approach can reduce the size of compensating devices, which in turn, reduces the cost. It also reduces power loss of the system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents potential barriers to integrate the squirrel cage induction generator (SCIG) and doubly fed induction generator (DFIG) type wind turbine in distribution networks. The analysis is carried out over a 16 bus distribution test system. Both static and dynamic analyses are performed to see the impact of two different generators on the distribution system. The simulation results show that both SCIG and DFIG type wind turbines have significant impact on the static voltage stability, power loss, and dynamic behavior of the system, which should be taken into account to improve systems performance before integrating wind generation in existing distribution networks.