19 resultados para pyrolysis

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of fabricating carbon nanofibers from cellulose nanofibers was investigated. Cellulose nanofiber of ~50 nm in diameter was produced using ball milling in an eco-friendly manner. The effect of the drying techniques of cellulose nanofibers on the morphology of carbon residue was studied. After pyrolysis of freeze-dried cellulose nanofibers below 600 °C, amorphous carbon fibers of ~20 nm in diameter were obtained. The pyrolysis of oven-dried precursors resulted in the loss of original fibrous structures. The different results arising from the two drying techniques are attributed to the difference in the spatial distance between cellulose nanofiber precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphitic carbon nitride (g-C3N4) has been synthesized via a two-step pyrolysis of melamine (C3H6N6) at 800°C for 2 h under vacuum conditions. X-ray diffraction (XRD) patterns strongly indicate that the synthesized sample is g-C3N4. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) morphologies indicate that the product is mainly composed of graphitic carbon nitride. The stoichiometric ratio of C:N is determined to be 0.72 by elemental analysis (EA). Chemical bonding of the sample has been investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Electron energy loss spectroscopy (EELS) verifies the bonding state between carbon and nitrogen atoms. Optical properties of the g-C3N4 were investigated by PL (photoluminescence) measurements and UV–Vis (ultraviolet–visible) absorption spectra. We suppose its luminescent properties may have potential application as component of optical nanoscale devices. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, carbon nanofibers were prepared by pyrolysis of freeze-dried cellulose nanofiber and the effect of pyrolysis conditions on the properties of carbon nanofiber was studied. SEM analysis revealed that slow heating rates below 400oC are critical to maintain the fibrous morphology after carbonization. The present study demonstrated the possibility of producing carbon nanofibers of ≤ 30 nm in diameter by a simple and scalable method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrolysis is the thermo-chemical conversion of carbonaceous feedstock in the absence of oxygen to produce bio-fuel (bio-oil, bio-char and syn-gas). Bio-fuel production from municipal green waste (MGW) through the pyrolysis process has attracted considerable attention recently in the renewable energy sector because it can reduce greenhouse gas emissions and contribute to energy security. This study analyses properties of MGW feedstock available in Rockhampton city of Central Queensland, Australia, and presents an experimental investigation of producing bio-fuel from that MGW through the pyrolysis process using a short sealed rotary furnace. It was found from the experiment that about 19.97% bio-oil, 40.83% bio-char and 29.77% syn-gas can be produced from the MGW. Then, a four-stage steady state simulation model is developed for pyrolysis process performance simulation using Aspen Plus software. In the first stage, the moisture content of the MGW feed is reduced. In the second stage, the MGW is decomposed according to its elemental constituents. In the third stage, condensate material is separated and, finally, the pyrolysis reactions are modelled using the Gibbs free energy minimisation approach. The MGW's ultimate and proximate analysis data were used in the Aspen Plus simulation as input parameters. The model is validated with experimentally measured data. A good agreement between simulation and experimental results was found. More specifically, the variation of modelling and experimental elemental compositions of the MGW was found to be 7.3% for carbon, 15.82% for hydrogen, 7.04% for nitrogen and 5.56% for sulphur. The validated model is used to optimise the biofuel production from the MGW as a function of operating variables such as temperature, moisture content, particle size and process heat air-fuel ratio. The modelling and optimisation results are presented, analysed and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focused ion beam (FIB) milling system has been used to create nanosized patterns as the template for patterned growth of carbon nanotubes on Si substrate surface without predeposition of metal catalysts. Carbon nanotubes only nucleate and grow on the template under controlled pyrolysis of iron phthalocyanine at 1000 °C. The size, growth direction, and density of the patterned nanotubes can be controlled under different growth conditions and template sizes. Atomic force microscopy and electron microscopy analyses reveal that the selective growth on the FIB template is due to its special surface morphology and crystalline structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aligned carbon nanotubes (CNTs) can be readily synthesized on quartz or silicon-oxide-coated Si substrates using a chemical vapor deposition method, but it is difficult to grow them on pure Si substrates without predeposition of metal catalysts. We report that aligned CNTs were grown by pyrolysis of iron phthalocyanine at 1000 °C on the templates created on Si substrates with simple mechanical scratching. Scanning electron microscopy and x-ray energy spectroscopy analysis revealed that the trenches and patterns created on the surface of Si substrates were preferred nucleation sites for nanotube growth due to a high surface energy, metastable surface structure, and possible capillarity effect. A two-step pyrolysis process maintained Fe as an active catalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO–C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200 °C for 1 h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000 °C). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO–C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale, high-density, and patterned carbon nanotubes (CNTs) on both pure Si and quartz (SiO2) substrates have been produced using different approaches. The CNTs were synthesized by pyrolysis of the ball-milled iron phthalocyanine (FePc) in a tube furnace under a Ar-5% H2 gas flow. Because patterned CNTs are difficult to grow directly on smooth and perfect single-crystalline Si wafer surface, mechanical scratches were created to help the selective deposition and growth of CNTs on the scratched areas. This simple process does not require pre-deposition of any metal catalysts. For SiO2 substrates, which can be readily covered by a CNT film, patterned CNTs are produced using a TEM grid as mask to cover the areas where CNTs are not needed. The growth temperature and vapor density have strong influence on the patterned CNT formation. The scratch areas with a special structure and a higher surface energy help the selective nucleation of CNTs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, mechanochemical processing has been used to manufacture a nanoparticulate powder of ZnO with a controlled particle size and minimal hard agglomeration. The suitability of this ZnO powder for use as either a photocatalyst or an optically transparent UV-filter was evaluated by comparing its optical and photocatalytic properties with those of three commercially available powders that were synthesised by chemical precipitation and flame pyrolysis. The ZnO powder synthesised by mechanochemical processing was found to exhibit high optical transparency and low photocatalytic activity per unit of surface area, which indicates that it is suitable for use in optically transparent UV-filters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combined effect of scan speed, hydrogen and air flow rates on the flame ionization detection (FID) peak response of phospholipid classes has been studied to determine the optimum levels of these parameters. The phospholipid composition of different types of commercial lecithins, as well as lecithins combined with fish oils, has been analyzed by Iatroscan TLC‐FID Mark‐6s under optimized conditions. An air flow rate of 2 L/min, a hydrogen flow rate of 150–160 mL/min, and a scan speed of 30 s/rod seem to be the ideal conditions for scanning phospholipids with complete pyrolysis in the flame in the Mark‐6 model. Increasing the scan speed rapidly decreased the FID response. A hydrogen flow rate as high as 170 mL/min could be used at relatively low air flow rates (&#x003C2 L/min) and the response declined when both air flow rate and hydrogen flow rate increased simultaneously. Both linear and curvilinear relationships had highly significant correlations (p&#x003C0.01) with the sample load. Time course reactions, including the hydrolysis of phosphatidylserine using enzymes, can be successfully monitored by the Iatroscan TLC‐FID Chromarod system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon nanofibers were fabricated by pyrolysis of plant-based cellulose nanofibers. The findings demonstrate the possibility of obtaining strong and commercially competitive carbon nanofibers that are used in many industries including aerospace, automobile and electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the extensive use of 129Xe NMR for characterization of high surface-to-volume porous solids, particularly zeolites, this method has not been widely used to explore the properties of microporous carbon materials. In this study, commercial amorphous carbons of different origin (produced from different precursors) and a series of activated carbons obtained by successive cyclic air oxidation/pyrolysis treatments of a single precursor were examined. Models of 129Xe chemical shift as a function of local Xe density, mean pore size, and temperature are discussed. The virial coefficient arising from binary xenon collisions, σXe-Xe, varied linearly with the mean pore size given by N2 adsorption analysis; σ Xe-Xe appeared to be a better probe of the mean pore size than the chemical shift extrapolated to zero pressure, σS. © 2008 MAIK Nauka.