23 resultados para protein targeting

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmodium falciparum, the causative agent of malaria, relies on a complex protein-secretion system for protein targeting into numerous subcellular destinations. Recently, a homologue of the Golgi re-assembly stacking protein (GRASP) was identified and used to characterise the Golgi organisation in this parasite. Here, we report on the presence of a splice variant that leads to the expression of a GRASP isoform. Although the first GRASP protein (GRASP1) relies on a well-conserved myristoylation motif, the variant (GRASP2) displays a different N-terminus, similar to GRASPs found in fungi. Phylogenetic analyses between GRASP proteins of numerous taxa point to an independent evolution of the unusual N-terminus that could reflect unique requirements for Golgi-dependent protein sorting and organelle biogenesis in P. falciparum. Golgi association of GRASP2 depends on the hydrophobic N-terminus that resembles a signal anchor, leading to a unique mode of Golgi targeting and membrane attachment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have identified a major allergenic protein from rye-grass pollen, tentatively designated Lol pIb of 31kDa and with pI 9.0. A cDNA clone encoding Lol pIb has been isolated, sequenced, and characterized. Lol pIb is located mainly in the starch granules. This is a distinct allergen from Lol pI, which is located in the cytosol. Lol pIb is synthesized in pollen as a pre-allergen with a transit peptide targeting the allergen to amyloplasts. Epitope mapping of the fusion protein localized the IgE binding determinant in the C-terminal domain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hepatitis is a major health related disease spread worldwide with frequent occurrence of epidemics. It is a zoonotic disease which leads to jaundice, anorexia, malaise and death. Although, vaccines have been developed against hepatitis A and hepatitis B, it is a challenge to generate vaccines against other prevalent forms of hepatitis which are equally harmful and spread worldwide. Natural products that are obtained from living organisms and found freely in nature have proven to be effective against several types of hepatitis due to presence of pharmacologically important bioactive compounds. Since they are natural products they do not cause much harm to body and can be easily applied or consumed. Our main focus is on hepatitis E virus (HEV) which is an opportunistic pathogen and leads to acute jaundice. This virus is mainly present in developing countries with poor sanitation facilities and effects individuals having weak immune response, mainly children, old people, organ transplant patients and pregnant women. HEV infection makes the patient more susceptible to infections from other viruses as well as HIV. In this review, we discussed about the natural protein known as lactoferrin which is isolated from milk colostrum and extracts of some medicinal plants that have proven to be effective against various forms of hepatitis. Such form of natural therapies forms the basis of modern medicine and major pharmaceutical discoveries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Retinoblastoma (RB), a malignant tumour of the eye arising from developing retina, is the most frequent primary intraocular malignancy of childhood. Its primary management with chemotherapy involves combination regimen of etoposide, vincristine and carboplatin and intra vitreal chemotherapy using melphalan when vitreous seeds develop. Radiotherapy is another effective mode in treating RB. We recently explored the notion if radiotherapy in RB can be mediated via Sodium Iodide Symporter (NIS), an intrinsic membrane glycoprotein which is a key regulator of iodide access to thyroid gland. Its expression has been exploited successfully for diagnostic imaging and molecular radionuclide-based therapy of thyroid cancer. We determined that NIS is expressed endogenously in RB tumour tissues, and in retinoblastoma cell lines Y79 and Weri-Rb-1, and therefore made an attempt to enhance the endogenously low expression of NIS protein in both Y79 and Weri-Rb-1 cells. Here we report about the potential of bovine lactoferrin (bLf) which is a known chemo preventive and emerging safe anti-cancer bio drug, as well as a natural transcriptional activator of genes, to enhance the endogenous expression of NIS in Y79 and Weri-Rb-1 cells. Real time PCR revealed that both cell lines express mRNA of lactoferrin receptors while flow cytometry and confocal microscopy showed the cells efficiently internalize bLf which upregulates NIS expression. These findings highlight an important step that could be taken towards the development of less harmful approaches for the treatment of RB by employing natural supplement bLf (with its clinically proven safe profile), and warrants further studies in future, focussing on enhancing NIS expression in RB cells and NIS functional assays in these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [35S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Members of the protein kinase C (PKC) family are key signalling mediators in immune responses, and pharmacological inhibition of PKCs may be useful for treating immune-mediated diseases. Objective: To review and discuss the insights gained so far into various PKC isozymes and the therapeutic potential and challenges of developing PKC inhibitors for immune disorder therapy. Methods: A literature review of the role of PKCs in immune cell signalling and recent studies describing immune functions associated with PKC isozyme deficiency in relevant mouse disease models, followed by specific case studies of current and potential therapeutic strategies targeting PKCs. Results/conclusion: There is vast amount of data supporting PKC isozymes as attractive drug targets for certain immune disorders. Although the development of specific PKC isozyme inhibitors has been challenging, some progress has been made. It remains to be seen if broad-scale or isozyme-selective inhibition of PKC will have clinical efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of the malaria parasite Plasmodium falciparum within the human host is dependent upon invasion of erythrocytes. This process is accomplished by the merozoite, a highly specialized form of the parasite. Secretory organelles including micronemes and rhoptries play a pivotal role in the invasion process by storing and releasing parasite proteins. The mechanism of protein sorting to these compartments is unclear. Using a transgenic approach we show that trafficking of the most abundant micronemal proteins (members of the EBL-family: EBA-175, EBA-140/BAEBL, and EBA-181/JSEBL) is independent of their cytoplasmic and transmembrane domains, respectively. To identify the minimal sequence requirements for microneme trafficking, we generated parasites expressing EBAGFP chimeric proteins and analyzed their distribution within the infected erythrocyte. This revealed that: (i) a conserved cysteine-rich region in the ectodomain is necessary for protein trafficking to the micronemes and (ii) correct sorting is dependent on accurate timing of expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The von Hippel-Lindau tumor suppressor protein (pVHL) suppresses tumor formation by binding the alpha subunits of hypoxia-inducible factors (HIFs) responsible for stimulating tumor angiogenesis and glycolysis, targeting them for ubiquitination and proteasomal destruction. Loss of pVHL leads to the development of sporadic renal cell carcinomas (RCCs). In the present study, we sought to determine whether engineered overexpression of pVHL in tumors other than RCC can inhibit tumor growth, either as a monotherapy, or in combination with antisense HIF-1alpha therapy. Intratumoral injection of subcutaneous EL-4 thymic lymphomas with an expression plasmid encoding pVHL resulted in the downregulation of HIF-1alpha and vascular endothelial growth factor (VEGF). There was a concomitant reduction in tumor angiogenesis and increased tumor cell apoptosis due in part to downregulation of Bcl-2 expression. VHL therapy resulted in the complete regression of small (0.1 cm diameter) tumors whereas, in contrast, large (0.4 cm diameter) EL-4 tumors were only slowed in their growth. Nevertheless, large tumors completely regressed in response to intratumoral injection of a combination of antisense HIF-1alpha and VHL plasmids. Combination therapy resulted in increased losses of HIF-1alpha, VEGF, and tumor blood vessels, and increased tumor cell apoptosis. These novel results suggest that synergistic therapies that simultaneously block the expression or function of HIF-1alpha, and enhance the expression or function of VHL may be beneficial in the treatment of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survivin is a dual functioning protein. It inhibits the apoptosis of cancer cells by inhibiting caspases, and also promotes cancer cell growth by stabilizing microtubules during mitosis. Since the molecular chaperone Hsp90 binds and stabilizes survivin, it is widely believed that down-regulation of survivin is one of the important therapeutic functions of Hsp90 inhibitors such as the phase III clinically trialed compound 17-AAG. However, Hsp90 interferes with a number of molecules that up-regulate the intracellular level of survivin, raising the question that clinical use of Hsp90 inhibitors may indirectly induce survivin expression and subsequently enhance cancer anti-drug responses. The purpose of this study is to determine whether targeting Hsp90 can alter survivin expression differently in different cancer cell lines and to explore possible mechanisms that cause the alteration in survivin expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibodies capable of inhibiting the invasion of Plasmodium merozoites into erythrocytes are present in individuals that are clinically immune to the malaria parasite. Those targeting the 19-kD COOH-terminal domain of the major merozoite surface protein (MSP)-119 are a major component of this inhibitory activity. However, it has been difficult to assess the overall relevance of such antibodies to antiparasite immunity. Here we use an allelic replacement approach to generate a rodent malaria parasite (Plasmodium berghei) that expresses a human malaria (Plasmodium falciparum) form of MSP-119. We show that mice made semi-immune to this parasite line generate high levels of merozoite inhibitory antibodies that are specific for P. falciparum MSP-119. Importantly, protection from homologous blood stage challenge in these mice correlated with levels of P. falciparum MSP-119–specific inhibitory antibodies, but not with titres of total MSP-119–specific immunoglobulins. We conclude that merozoite inhibitory antibodies generated in response to infection can play a significant role in suppressing parasitemia in vivo. This study provides a strong impetus for the development of blood stage vaccines designed to generate invasion inhibitory antibodies and offers a new animal model to trial P. falciparum MSP-119 vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A short motif termed Plasmodium export element (PEXEL) or vacuolar targeting signal (VTS) characterizes Plasmodium proteins exported into the host cell. These proteins mediate host cell modifications essential for parasite survival and virulence. However, several PEXEL-negative exported proteins indicate that the currently predicted malaria exportome is not complete and it is unknown whether and how these proteins relate to PEXEL-positive export. Here we show that the N-terminal 10 amino acids of the PEXEL-negative exported protein REX2 (ring-exported protein 2) are necessary for its targeting and that a single-point mutation in this region abolishes export. Furthermore we show that the REX2 transmembrane domain is also essential for export and that together with the N-terminal region it is sufficient to promote export of another protein. An N-terminal region and the transmembrane domain of the unrelated PEXEL-negative exported protein SBP1 (skeleton-binding protein 1) can functionally replace the corresponding regions in REX2, suggesting that these sequence features are also present in other PEXEL-negative exported proteins. Similar to PEXEL proteins we find that REX2 is processed, but in contrast, detect no evidence for N-terminal acetylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhoptry associated protein 1 (RAP1) and 2 (RAP2), together with a poorly described third protein RAP3, form the low molecular weight complex within the rhoptries of Plasmodium falciparum. These proteins are thought to play a role in erythrocyte invasion by the extracellular merozoite and are important vaccine candidates. We used gene-targeting technology in P.falciparum blood-stage parasites to disrupt the RAP1 gene, producing parasites that express severely truncated forms of RAP1. Immunoprecipitation experiments suggest that truncated RAP1 species did not complex with RAP2 and RAP3. Consistent with this were the distinct subcellular localizations of RAP1 and 2 in disrupted RAP1 parasites, where RAP2 does not traffic to the rhoptries but is instead located in a compartment that appears related to the lumen of the endoplasmic reticulum. These results suggest that RAP1 is required to localize RAP2 to the rhoptries, supporting the hypothesis that rhoptry biogenesis is dependent in part on the secretory pathway in the parasite. The observation that apparently host-protective merozoite antigens are not essential for efficient erythrocyte invasion has important implications for vaccine design.