2 resultados para protein NMR

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have determined the structure of the reduced form of the DsbA oxidoreductase from Vibrio cholerae. The reduced structure shows a high level of similarity to the crystal structure of the oxidized form and is typical of this class of enzyme containing a thioredoxin domain with an inserted α-helical domain. Proteolytic and thermal stability measurements show that the reduced form of DsbA is considerably more stable than the oxidized form. NMR relaxation data have been collected and analyzed using a model-free approach to probe the dynamics of the reduced and oxidized states of DsbA. Akaike's information criteria have been applied both in the selection of the model-free models and the diffusion tensors that describe the global motions of each redox form. Analysis of the dynamics reveals that the oxidized protein shows increased disorder on the pico- to nanosecond and micro- to millisecond timescale. Many significant changes in dynamics are located either close to the active site or at the insertion points between the domains. In addition, analysis of the diffusion data shows there is a clear difference in the degree of interdomain movement between oxidized and reduced DsbA with the oxidized form being the more rigid. Principal components analysis has been employed to indicate possible concerted movements in the DsbA structure, which suggests that the modeled interdomain motions affect the catalytic cleft of the enzyme. Taken together, these data provide compelling evidence of a role for dynamics in the catalytic cycle of DsbA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intestinal fatty acid-binding protein (I-FABP) is a small protein that binds long-chain dietary fatty acids in the cytosol of the columnar absorptive epithelial cells (enterocytes) of the intestine. The binding cavity of I-FABP is much larger than is necessary to bind a fatty acid molecule, which suggests that the protein may be able to bind other hydrophobic and amphipathic ligands such as lipophilic drugs. Herein we describe the binding of three structurally diverse lipophilic drugs, bezafibrate, ibuprofen (both R- and S-isomers) and nitrazepam to I-FABP. The rank order of affinity for I-FABP determined for these compounds was found to be R-ibuprofen {approx} bezafibrate > S-ibuprofen >> nitrazepam. The binding affinities were not directly related to aqueous solubility or partition coefficient of the compounds; however, the freely water-soluble drug diltiazem showed no affinity for I-FABP. Drug-I-FABP interaction interfaces were defined by analysis of chemical shift perturbations in NMR spectra, which revealed that the drugs bound within the central fatty acid binding cavity. Each drug participated in a different set of interactions within the cavity; however, a number of common contacts were observed with residues also involved in fatty acid binding. These data suggest that the binding of non-fatty acid lipophilic drugs to I-FABP may increase the cytosolic solubility of these compounds and thereby facilitate drug transport from the intestinal lumen across the enterocyte to sites of distribution and metabolism.