60 resultados para primary motor cortex

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a repetitive index finger flexion–extension task at maximal voluntary rate (MVR) begins to decline just a few seconds into the task and we have previously postulated that this breakdown has a central origin. To test this hypothesis, we have combined two objectives; to determine whether motor practice can lessen the performance deterioration in an MVR task, and whether further gains can be achieved with a transcranial magnetic stimulation (TMS) protocol that increases corticomotor excitability (CME). Eleven right-handed subjects participated in a randomized crossover study design that consisted of a 15-min interventional TMS at I-wave periodicity (ITMS) and single-pulsed Sham intervention prior to six 10-s practice sets of a repetitive finger flexion–extension task at MVR. Motor-evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle. The starting movement rate, and the percentage decline in rate by the end of the MVR were quantitated. Training of the MVR task improved the sustainability of the task by reducing the decline in movement rate. CME increased steadily after each training bout, and this increase was maintained up to 20 min after the last bout. ITMS further increased CME, and was associated with an increase in both the starting rate of the MVR task and its sustainability, when compared to Sham. The results implicate central motor processes in the performance and sustainability of the MVR task, and indicate that MVR kinematics can improve with short-term training and with non-invasive neuro-modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: A single session of skill or strength training can modulate the primary motor cortex (M1), which manifests as increased corticospinal excitability (CSE) and decreased short-latency intra-cortical inhibition (SICI). We tested the hypothesis that both skill and strength training can propagate the neural mechanisms mediating cross-transfer and modulate the ipsilateral M1 (iM1). METHODS: Transcranial magnetic stimulation (TMS) measured baseline CSE and SICI in the contralateral motor cortex (cM1) and iM1. Participants completed 4 sets of unilateral training with their dominant arm, either visuomotor tracking, metronome-paced strength training (MPST), self-paced strength training (SPST) or control. Immediately post training, TMS was repeated in both M1s. RESULTS: Motor-evoked potentials (MEPs) increased and inhibition was reduced for skill and MPST training from baseline in both M1s. Self-paced strength training and control did not produce changes in CSE and SICI when compared to baseline in both M1s. After training, skill and MPST increased CSE and decreased SICI in cM1 compared to SPST and control. Skill and MPST training decreased SICI in iM1 compared to SPST and control post intervention; however, CSE in iM1 was not different across groups post training. CONCLUSION: Both skill training and MPST facilitated an increase in CSE and released SICI in iM1 and cM1 compared to baseline. Our results suggest that synchronizing to an auditory or a visual cue promotes neural adaptations within the iM1, which is thought to mediate cross transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-tasking is intrinsic to many daily activities, including walking and driving. However, the activity of the primary motor cortex (M1) in response to dual-tasks (DT) is still not well characterised. A recent meta-analysis (Corp in Neurosci Biobehav Rev 43:74-87, 2014) demonstrated a reduction in M1 inhibition during dual-tasking, yet responses were not consistent between studies. It was suggested that DT difficulty might account for some of this between-study variability. The aim of this study was to investigate whether corticospinal excitability and M1 inhibition differed between an easier and more difficult dual-task. Transcranial magnetic stimulation (TMS) was applied to participants' abductor pollicis brevis muscle representation during a concurrent pincer grip task and stationary bike-riding. The margin of error in which to maintain pincer grip force was reduced to increase task difficulty. Compared to ST conditions, significantly increased M1 inhibition was demonstrated for the easier, but not more difficult, DT. However, there was no significant difference in M1 inhibition between easy and difficult DTs. The difference in difficulty between the two tasks may not have been wide enough to result in significant differences in M1 inhibition. Increased M1 inhibition for the easy DT condition was in opposition to the reduction in M1 inhibition found in our meta-analysis (Corp in Neurosci Biobehav Rev 43:74-87, 2014). We propose that this may be partially explained by differences in the timing of the TMS pulse between DT studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excitability at the motoneuron pool and motor cortex is specifically modulated in lengthening compared to isometric contractions. J Neurophysiol 101: 2030–2040, 2009. First published January 28, 2008; doi:10.1152/jn.91104.2008. Neural control of muscle contraction seems to be unique during muscle lengthening. The present study aimed to determine the specific sites of modulatory control for lengthening compared with isometric contractions. We used stimulation of the motor cortex and corticospinal tract to observe changes at the spinal and cortical levels. Motor-evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs) were evoked in biceps brachii and brachioradialis during maximal and submaximal lengthening and isometric contractions at the same elbow angle. Sizes of CMEPs and MEPs were lower in lengthening contractions for both muscles (by 28 and 16%, respectively; P 0.01), but MEP-to-CMEP ratios increased (by 21%; P 0.05). These results indicate reduced excitability at the spinal level but enhanced motor cortical excitability for lengthening compared with isometric muscle contractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurodegeneration accompanies the process of natural aging, reducing the ability to perform functional daily activities. Transcranial direct current stimulation (tDCS) alters neuronal excitability and motor performance; however its beneficial effect on the induction of primary motor cortex (M1) plasticity in older adults is unclear. Moreover, little is known as to whether the tDCS electrode arrangement differentially affects M1 plasticity and motor performance in this population. In a double-blinded, cross-over trial, we compared unilateral, bilateral and sham tDCS combined with visuomotor tracking, on M1 plasticity and motor performance of the non-dominant upper limb, immediately post and 30 min following stimulation. We found (a) unilateral and bilateral tDCS decreased tracking error by 12–22% at both time points; with sham decreasing tracking error by 10% at 30 min only, (b) at both time points, motor evoked potentials (MEPs) were facilitated (38–54%) and short-interval intracortical inhibition was released (21–36%) for unilateral and bilateral conditions relative to sham, (c) there were no differences between unilateral and bilateral conditions for any measure. These findings suggest that tDCS modulated elements of M1 plasticity, which improved motor performance irrespective of the electrode arrangement. The results provide preliminary evidence indicating that tDCS is a safe non-invasive tool to preserve or improve neurological function and motor control in older adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:
Two small studies had evaluated the efficacy of rTMS in migraine. One tested high frequency rTMS over the dorsolateral prefrontal cortex while the other evaluated 1 Hz rTMS over the vertex.
Aim:
To test the feasibility of 10 Hz rTMS of motor cortex as an adjunctive therapy in patients with chronic migraine.
Materials and Methods:
We randomized (2:1 ratio) chronic migraine patients on medical preventive treatment to receive either rTMS or sham therapy for 10 sessions. rTMS (80% resting motor threshold, 10Hz, 20 trains, 5 secs/train, inter-train interval 1 min, total 1000 stimuli/session) was applied over the right motor cortex.
Result:
Nine patients were randomized. Six received rTMS
and three had sham therapy. Three patients in the rTMS arm withdrew from the study due to increased headache frequency and discomfort from the treatment. The remaining six cases (3 rTMS, 3 sham) completed the study. The study was prematurely stopped due to the significant worsening of headache from rTMS. No significant differences in outcome measures were found between real and sham rTMS.
Conclusion:
Although the study was terminated prematurely, the high dropout rate (50%) due to worsening headaches suggested that rTMS over the motor cortex is poorly tolerated in chronic migraine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social cognitive difficulties are common in the acute phase of bipolar disorder and, to a lesser extent, during the euthymic stage, and imaging studies of social cognition in euthymic bipolar disorder have implicated mirror system brain regions. This study aimed to use a novel multimodal approach (i.e., including both transcranial magnetic stimulation (TMS) and electroencephalogram (EEG)) to investigate mirror systems in bipolar disorder. Fifteen individuals with euthymic bipolar disorder and 16 healthy controls participated in this study. Single-pulse TMS was applied to the optimal site in the primary motor cortex (M1), which stimulates the muscle of interest during the observation of hand movements (goal-directed or interacting) designed to elicit mirror system activity. Single EEG electrodes (C3, CZ, C4) recorded mu rhythm modulation concurrently. Results revealed that the patient group showed significantly less mu suppression compared to healthy controls. Surprisingly, motor resonance was not significantly different overall between groups; however, bipolar disorder participants showed a pattern of reduced reactivity on some conditions. Although preliminary, this study indicates a potential mirror system deficit in euthymic bipolar disorder, which may contribute to the pathophysiology of the disorder.