35 resultados para predicted packet padding

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anonymous communication has become a hot research topic in order to meet the increasing demand for web privacy protection. However, there are few such systems which can provide high level anonymity for web browsing. The reason is the current dominant dummy packet padding method for anonymization against traffic analysis attacks. This method inherits huge delay and bandwidth waste, which inhibits its use for web browsing. In this paper, we propose a predicted packet padding strategy to replace the dummy packet padding method for anonymous web browsing systems. The proposed strategy mitigates delay and bandwidth waste significantly on average. We formulated the traffic analysis attack and defense problem, and defined a metric, cost coefficient of anonymization (CCA), to measure the performance of anonymization. We thoroughly analyzed the problem with the characteristics of web browsing and concluded that the proposed strategy is better than the current dummy packet padding strategy in theory. We have conducted extensive experiments on two real world data sets, and the results confirmed the advantage of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anonymous web browsing is an emerging hot topic with many potential applications for privacy and security. However, research on low latency anonymous communication, such as web browsing, is quite limited; one reason is the intolerable delay caused by the current dominant dummy packet padding strategy, as a result, it is hard to satisfy perfect anonymity and limited delay at the same time for web browsing. In this paper, we extend our previous proposal on using prefetched web pages as cover traffic to obtain perfect anonymity for anonymous web browsing, we further explore different aspects in this direction. Based on Shannon’s perfect secrecy theory, we formally established a mathematical model for the problem, and defined a metric to measure the cost of achieving perfect anonymity. The experiments on a real world data set demonstrated that the proposed strategy can reduce delay more than ten times compared to the dummy packet padding methods, which confirmed the vast potentials of the proposed strategy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anonymous web browsing is a hot topic with many potential applications for privacy reasons. The current dominant strategy to achieve anonymity is packet padding with dummy packets as cover traffic. However, this method introduces extra bandwidth cost and extra delay. Therefore, it is not practical for anonymous web browsing applications. In order to solve this problem, we propose to use the predicted web pages that users are going to access as the cover traffic rather than dummy packets. Moreover, we defined anonymity level as a metric to measure anonymity degrees, and established a mathematical model for anonymity systems, and transformed the anonymous communication problem into an optimization problem. As a result, users can find tradeoffs among anonymity level and cost. With the proposed model, we can describe and compare our proposal and the previous schemas in a theoretical style. The preliminary experiments on the real data set showed the huge potential of the proposed strategy in terms of resource saving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently high-speed networks have been attacked by successive waves of Distributed Denial of Service (DDoS) attacks. There are two major challenges on DDoS defense in the high-speed networks. One is to sensitively and accurately detect attack traffic, and the other is to filter out the attack traffic quickly, which mainly depends on high-speed packet classification. Unfortunately most current defense approaches can not efficiently detect and quickly filter out attack traffic. Our approach is to find the network anomalies by using neural network, deploy the system at distributed routers, identify the attack packets, and then filter them quickly by a Bloom filter-based classifier. The evaluation results show that this approach can be used to defend against both intensive and subtle DDoS attacks, and can catch DDoS attacks’ characteristic of starting from multiple sources to a single victim. The simple complexity, high classification speed and low storage requirements make it especially suitable for DDoS defense in high-speed networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IP source address spoofing exploits a fundamental weakness in the Internet Protocol. It is exploited in many types of network-based attacks such as session hijacking and Denial of Service (DoS). Ingress and egress filtering is aimed at preventing IP spoofing. Techniques such as History based filtering are being used during DoS attacks to filter out attack packets. Packet marking techniques are being used to trace IP packets to a point that is close as possible to their actual source. Present IP spoofing  countermeasures are hindered by compatibility issues between IPv4 and IPv6, implementation issues and their effectiveness under different types of attacks. We propose a topology based packet marking method that builds on the flexibility of packet marking as an IP trace back method while overcoming most of the shortcomings of present packet marking techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an independent evaluation of six recent hidden Markov model (HMM) genefinders. Each was tested on the new dataset (FSH298), the results of which showed no dramatic improvement over the genefinders tested five years ago. In addition, we introduce a comprehensive taxonomy of predicted exons and classify each resulting exon accordingly. These results are useful in measuring (with finer granularity) the effects of changes in a genefinder. We present an analysis of these results and identify four patterns of inaccuracy common in all HMM-based results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internet Protocol (IP) traceback is the enabling technology to control Internet crime. In this paper, we present a novel and practical IP traceback system called Flexible Deterministic Packet Marking (FDPM) which provides a defense system with the ability to find out the real sources of attacking packets that traverse through the network. While a number of other traceback schemes exist, FDPM provides innovative features to trace the source of IP packets and can obtain better tracing capability than others. In particular, FDPM adopts a flexible mark length strategy to make it compatible to different network environments; it also adaptively changes its marking rate according to the load of the participating router by a flexible flow-based marking scheme. Evaluations on both simulation and real system implementation demonstrate that FDPM requires a moderately small number of packets to complete the traceback process; add little additional load to routers and can trace a large number of sources in one traceback process with low false positive rates. The built-in overload prevention mechanism makes this system capable of achieving a satisfactory traceback result even when the router is heavily loaded. The motivation of this traceback system is from DDoS defense. It has been used to not only trace DDoS attacking packets but also enhance filtering attacking traffic. It has a wide array of applications for other security systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RSA scheme is used to sign messages; however, in order to avoid forgeries, a message can be padded with a fixed string of data P. De Jonge and Chaum showed in 1985 that forgeries can be constructed if the size of P (measured in bytes) is less than the size of N/3, where N is the RSA modulus. Girault and Misarsky then showed in 1997 that forgeries can be constructed if the size of P is less than the size of N/2. In 2001, Brier, Clavier, Coron and Naccache showed that forgeries can still be constructed when the size of P is less than two thirds the size of N. In this paper, we demonstrate that this padding scheme is always insecure; however, the complexity of actually finding a forgery is O(N). We then focus specifically on the next unsettled case, where P is less than 3/4 the size of N and show that finding a forgery is equivalent to solving a set of diophantine equations. While we are not able to solve these equations, this work may lead to a break-through by means of algebraic number theory techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current DDoS attacks are carried out by attack tools, worms and botnets using different packet-transmission strategies and various forms of attack packets to beat defense systems. These problems lead to defense systems requiring various detection methods in order to identify attacks. Moreover, DDoS attacks can mix their traffics during flash crowds. By doing this, the complex defense system cannot detect the attack traffic in time. In this paper, we propose a behavior based detection that can discriminate DDoS attack traffic from traffic generated by real users. By using Pearson's correlation coefficient, our comparable detection methods can extract the repeatable features of the packet arrivals. The extensive simulations were tested for the accuracy of detection. We then performed experiments with several datasets and our results affirm that the proposed method can differentiate traffic of an attack source from legitimate traffic with a quick response. We also discuss approaches to improve our proposed methods at the conclusion of this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Denial-of-Service attack (DDoS) is a major threat for cloud environment. Traditional defending approaches cannot be easily applied in cloud security due to their relatively low efficiency, large storage, to name a few. In view of this challenge, a Confidence-Based Filtering method, named CBF, is investigated for cloud computing environment, in this paper. Concretely speaking, the method is deployed by two periods, i.e., non-attack period and attack period. More specially, legitimate packets are collected at non-attack period, for extracting attribute pairs to generate a nominal profile. With the nominal profile, the CBF method is promoted by calculating the score of a particular packet at attack period, to determine whether to discard it or not. At last, extensive simulations are conducted to evaluate the feasibility of the CBF method. The result shows that CBF has a high scoring speed, a small storage requirement and an acceptable filtering accuracy, making it suitable for real-time filtering in cloud environment.