17 resultados para population biology

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Roach (Rutilus rutilus), a previously unstudied cyprinid fish of European origin, were studied to ascertain the life history of the species in Australia. The population was found to display comparatively average growth, condition, and reproductive traits with that described elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1We censused ectoparasite populations of adult and nestling swifts over the course of the host's breeding season. Nearly all of the birds were infested with chewing lice and two-thirds of the nests were infested with louse flies. Feather mites were observed but not quantified.2Lice and louse flies both showed aggregated distributions among hosts. Louse eggs, hatched lice and adult louse flies had negative binomial distributions, whereas the aggregated distribution of louse fly pupae was not adequately described by negative binomial or Poisson models.3Transmission of lice from parents to offspring was documented. A comparison of the age structure of lice on parents and offspring indicated that most transmission was by nymphal lice.4Host reproductive success and survival appeared to be independent of the number of lice or louse flies. Neither parasite correlated with the number, body mass, or date of fledging of young birds, nor with the overwinter survival of adults. We caution, however, that experimental manipulations of parasite load are required for a definitive test of the impact of ectoparasites on evolutionary fitness components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diseases in natural ecosystems are often assumed to be less severe than those observed in domestic cropping systems due to the extensive biodiversity exhibited in wild vegetation communities. In Australia, it is this natural biodiversity that is now under threat from Phytophthora cinnamomi. The soilborne Oomycete causes severe decline of native vegetation communities in south-western Victoria, Australia, disrupting the ecological balance of native forest and heathland communities. While the effect of disease caused by P. cinnamomi on native vegetation communities in Victoria has been extensively investigated, little work has focused on the Anglesea healthlands in south-western Victoria. Nothing is known about the population structure of P. cinnamomi at Anglesea. This project was divided into two main components to investigate fundamental issues affecting the management of P. cinnamomi in the Anglesea heathlands. The first component examined the phenotypic characteristics of P. cinnamomi isolates sampled from the population at Anglesea, and compared these with isolates from other regions in Victoria, and also from Western Australia. The second component of the project investigated the effect of the fungicide phosphonate on the host response following infection by P. cinnamomi. Following soil sampling in the Anglesea heathlands, a collection of P, cinnamomi isolates was established. Morphological and physiological traits of each isolate were examined. All isolates were found to be of the A2 mating type. Variation was demonstrated among isolates in the following characteristics: radial growth rate on various nutrient media, sporangial production, and sporangial dimensions. Oogonial dimensions did not differ significantly between isolates. Morphological and physiological variation was rarely dependant on isolate origin. To examine the genetic diversity among isolates and to determine whether phenotypic variation observed was genetically based, Random Amplified Polymorphic DNA (RAPD) analyses were conducted. No significant variation was observed among isolates based on an analysis of molecular variance (AMQVA). The results are discussed in relation to population biology, and the effect of genetic variation on population structure and population dynamics. X australis, an arborescent monocotyledon indigenous to Australia, is highly susceptible to infection by P. cinnamomi. It forms an important component of the heathland vegetation community, providing habitat for native flora and fauna, A cell suspension culture system was developed to investigate the effect of the fungicide phosphonate on the host-pathogen interaction between X. australis and P. cinnamomi. This allowed the interaction between the host and the pathogen to be examined at a cellular level. Subsequently, histological studies using X. australis seedlings were undertaken to support the cellular study. Observations in the cell culture system correlated well with those in the plant. The anatomical structure of X australis roots was examined to assist in the interpretation of results of histopathological studies. The infection of single cells and roots of X. australis, and the effect of phosphonate on the interaction are described. Phosphonate application prior to inoculation with P. cinnamomi reduced the infection of cells in culture and of cells in planta. In particular, phosphonate was found to stimulate the production of phenolic material in roots of X australis seedlings and in cells in suspension cultures. In phosphonate-treated roots of X australis seedlings, the deposition of electron dense material, possibly lignin or cellulose, was observed following infection with P. cinnamomi. It is proposed that this is a significant consequence of the stimulation of plant defence pathways by the fungicide. Results of the study are discussed in terms of the implications of the findings on management of the Anglesea heathlands in Victoria, taking into account variation in pathogen morphology, pathogenicity and genotype. The mode of action of phosphonate in the plant is discussed in relation to plant physiology and biochemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seagrass species form important marine and estuarine habitats providing valuable ecosystem services and functions. Coastal zones that are increasingly impacted by anthropogenic development have experienced substantial declines in seagrass abundance around the world. Australia, which has some of the world's largest seagrass meadows and is home to over half of the known species, is not immune to these losses. In 1999 a review of seagrass ecosystems knowledge was conducted in Australia and strategic research priorities were developed to provide research direction for future studies and management. Subsequent rapid evolution of seagrass research and scientific methods has led to more than 70% of peer reviewed seagrass literature being produced since that time. A workshop was held as part of the Australian Marine Sciences Association conference in July 2015 in Geelong, Victoria, to update and redefine strategic priorities in seagrass research. Participants identified 40 research questions from 10 research fields (taxonomy and systematics, physiology, population biology, sediment biogeochemistry and microbiology, ecosystem function, faunal habitats, threats, rehabilitation and restoration, mapping and monitoring, management tools) as priorities for future research on Australian seagrasses. Progress in research will rely on advances in areas such as remote sensing, genomic tools, microsensors, computer modeling, and statistical analyses. A more interdisciplinary approach will be needed to facilitate greater understanding of the complex interactions among seagrasses and their environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Endemic asp, Aspius vorax, from the middle section of the Euphrates River flowing through eastern Syria were studied to determine the main characteristics of their population structure, morphological parameters and reproductive biology. Samples ranged between 0+ and 4+ years of age and were dominated by 2+ years old group. Total length (TL) ranged between 19 and 70 cm corresponding with 46 to 2824.5 g weight, respectively. Fish growth has isometric pattern and the overall sex ratio was unbiased. Seasonal changes in the condition factor were related with the water temperature as well as the spawning season. Annual cycle of gonadosomatic index (GSI) readings indicated that spawning season occur around March when fish longer than 36 cm can mate. Average pre-spawning GSI was greater in individuals older than 2 years. Meanwhile, female fecundity was highly related to TL and weight. These findings did not always concur with previous observations from other asp populations, mainly in southern and northern Mesopotamia. Our results highlighted basic biological aspects of the local population and indicated differences between populations which can assist in fisheries management, conservation and commercial culture of the investigated species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated changes in the spatial organization of individuals within a population of endangered Southern Bell Frogs Litoria raniformis over an eight-month period. Our results identified strong temporal changes in both spatial organization and the apparent location of L. raniformis within the study site. Ripley's K Function analyses showed that the position of individuals relative to one another shifted from random immediately after the study site was flooded (p < 0.005), to strongly clustered at spatial scales between 0-1 500 m during the peak breeding period (p < 0.005). The majority of flooded areas were dry by April and May and individuals again became aggregated within the remaining waterbodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The White-browed Treecreeper Climacteris affinis is one of many woodland-dependent birds that are at risk from the encroachment of human-dominated land-uses into natural landscapes. The White-browed Treecreeper inhabits semi-arid woodlands in north-west Victoria, Australia, a vegetation community that has undergone extreme modification in the last century due to the expansion of agriculture in the region. Extant woodlands represent only 10% of the original woodland cover in the region, and are highly fragmented and disturbed in many districts. Thus, the survival of the White-browed Treecreeper may depend on active management. However, current knowledge of the ecology and biology of this species is virtually non-existent, and inadequate for informed and effective conservation actions. The aim of this thesis is to redress this situation and provide the ecological basis for sound conservation management of the species. The thesis consists of two parts: an investigation of habitat use at three spatial scales and a study of the social organization, nesting requirements, breeding behaviour and reproductive success of a population of White-browed Treecreepers. Fifty-six patches of remnant woodland in north-west Victoria were surveyed to determine the factors affecting the occurrence of the White-browed Treecreeper at the regional scale. It was detected in 16 patches, and was largely confined to two core districts - Yarrara and, Wyperfeld (Pine Plains). The floristic composition of the dominant tree species was an important determinant of patch occupancy, with the results providing quantitative support for the previously suspected affinity for Belah Casuarina pauper and Slender Cypress-pine Callitris gracilis — Buloke Allocasuarina luehmannii woodlands. However, the absence of the White-browed Treecreeper from several districts was due to factors other than a lack of appropriate habitat. Demographic isolation - the distance from the focal patch to the nearest population of the White-browed Treecreeper - was the most important variable in explaining variation in patch occupancy. Patches isolated from other treecreeper populations by more than 8.3 km in landscapes of non-preferred native vegetation, and 3 km in agricultural landscapes, were unlikely to support the White-browed Treecreeper. The impact of habitat loss and fragmentation on the capacity of individuals to move through the landscape (i.e. functional connectivity) is considered in relation to disruption to dispersal and migration, and the potential collapse of local metapopulations. Habitat use was then examined in a network of patches and linear strips of Belah woodland embedded in a predominantly cultivated landscape. A minimum area of 18.5 ha of Belah woodland was identified as the most important criterion for patch occupancy at the local scale. This landscape appeared to be permeable to movement by the White-browed Treecreeper, facilitated by the extensive network of linear habitat, and clusters of small to medium fragments. The third scale of habitat use investigated the frequency of use of 1-ha plots within tracts of occupied woodland. It is important to discriminate between habitat traits that operate at the population level, and those that act as proximate cues for habitat selection by individuals. Woodlands that have high tree density, extensive cover of low-stature shrubs, abundant lichen, a complex vertical structure, and relatively low cover of grass and herbs are likely to support larger populations of the White-browed Treecreeper. However, individuals appeared to be using tree dominance (positive) and tall shrub cover (negative) as proximate environmental stimuli for habitat selectivity. A relatively high cover of ground lichen, which probably reflects a ground layer with low disturbance and high structural complexity, was also a reliable indicator of habitat use. Predictive models were developed which could be used to plan vegetation management to enhance habitat for the White-browed Treecreeper. The results of the regional, landscape and patch-scale investigations emphasise that factors operating at multiple spatial scales influence the suitability of remnant vegetation as habitat for the White-browed Treecreeper. The White-browed Treecreeper is typical of many small Australian passerines in that it has high annual survival, small clutches, a long breeding season, multiple broods and relatively low reproductive rates. Reproductive effort is adjusted through the number of clutches laid rather than clutch size. They occupy relatively large, all-purpose territories throughout the year. However, unlike many group territorial birds, territory size was not related to the number of occupants. The White-browed Treecreeper nests in tree hollows. They select hollows with a southerly orientation where possible, and prefer hollows that were higher from the ground. At Yarrara, there was considerable spatial variation in hollow abundance that, in concert with territorial constraints, restricted the actual availability of hollows to less than the absolute abundance of hollows. Thus, the availability of suitable hollows may limit reproductive productivity in some territories, although the magnitude of this constraint on overall population growth is predicted to be small. However, lack of recruitment of hollow-bearing trees would increase the potential for hollow availability to limit population growth. This prospect is particularly relevant in grazed remnants and those outside the reserve system. Facultative cooperative breeding was confirmed, with groups formed through male philopatry. Consequently, natal dispersal is female-biased, although there was no skew in the sex ratio of the fledglings or the general adult population. Helpers were observed performing all activities associated with parenting except copulation and brooding. Cooperatively breeding groups enjoyed higher fledgling productivity than simple pairs, after statistically accounting for territory and parental quality. However, the difference reflected increased productivity in the 1999-breeding season only, when climatic conditions were more favourable than in 1998. Breeding commenced earlier in 1999, and all breeding units were more likely to attempt a second brood. However, only breeders with helpers were successful in fledging second brood young, and it was this difference that accounted for the overall discrepancy in productivity. The key mechanism for increased success in cooperative groups was a reduction hi the interval between first and second broods, facilitated by compensatory reductions in the level of care to the first brood. Thus, females with helpers probably achieved significant energetic savings during this period, which enabled them to re-lay sooner. Furthermore, they were able to recommence nesting when the fledglings from the first brood were younger because there were more adults to feed the dependent juveniles. The current utility, and possible evolutionary pathways, of cooperative breeding is examined from the perspective of both breeders and helpers. Breeders benefit through enhanced fledgling productivity in good breeding conditions and a reduction in the burden of parental care, which may impart significant energetic savings. Further, breeders may facilitate philopatry as a means for ensuring a minimum level of reproductive success. Helpers benefit through an increase in their inclusive fitness in the absence of opportunities for independent breeding (i.e. ecological constraints) and access to breeding vacancies in the natal or adjacent territories (i.e. benefits of philopatry). However, the majority of breeding unit-years comprised unassisted breeders, which suggests that pairs are selectively favoured under certain environmental or demographic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Populations of Dicranoloma billardierei (Brid) Par., D. dicarpum (Nees.) Par., D. menziesii (Tayl.) Par. and D. platycaulon (C. Muell) Dix, from two pockets of cool temperate rainforest within the Yarra Ranges National Park (Cement Creek and Myrtle Loop), were sampled for a period of two years to establish their reproductive biology. The population dynamics within quadrats of D. billardierei, D. menziesii and D. platycaulon at Cement Creek also was investigated over a two year period, through the seasonal recording of shoot loss and/or gain, The four species of Dicranoloma were dioicous and sexually dimorphic, with dwarf males epiphytic on the female plants. Antheridia were initiated before archegonia and required ca, 6 months to reach maturity, compared with 1 to 2 months for archegonia. More archegonia than antheridia occurred per inflorescence and were more variable Fertilization occurred during winter in D. billardierei and summer/ autumn in D. menziesii and D. platycaulon. The duration of the sporophyte cycle of D. menziesii was 12 months, shorter than that of D. billardierei and D. platycaulon which lasted for a period of 18 months to 2 years. In the latter two species an overlap of sporophyte generations occurred. This was particularly pronounced in D. billardierei as sporophytes remained in the swollen venter maturation stage for a period of 6 months. The duration of the sporophyte cycle could not be ascertained as few fruiting stems of D. dicarpum were found. All four species of Dicranoloma regenerated from fragments cultured in the laboratory, and only two of the species showed evidence of production of asexual propagules in the field. Dicranoloma dicarpum was found to produce gemmae, an observation which had not been recorded before, and most of the leaves on stems of D. platycaulon had detached subulas. Shoot loss was minimal in all four species, and when it did occur, (eg D. billardierei) it was attributed to disturbance by animals. Within quadrats there was an increase in shoot density which resulted from the development of innovation(s) and/or side branches rather than from the recruitment of new plants from spores or the regeneration of asexual propagules. The four species of Dicranoloma investigated were robust, perennial mosses and formed an important component of the bryophytes found within the study area. Dicranoloma menziesii was the predominant species establishing on a variety of substrata, particularly as an epiphyte on Nothofagus cunninghamii The other species were more selective in their choice of substratum. Dicranoloma platycaulon was found exclusively on the trunks of myrtle beech and D. billardierei on fallen logs and exposed roots. Dicranoloma dicarpum which was not common, grew as an epiphyte on myrtle beech and on rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The abalone Haliotis laevigata Donovan is commercially exploited in southern Australia; Haliotis scalaris Leach is a smaller, noncommercial species. This thesis describes the early life history of both species and other aspects of the fishery biology of H. Iaevigata required for fishery management. Both abalone species recruit onto a crustose coralline substratum variously from spring to winter. After settlement the growth rate of both species Is linear for a number of years (1 .7mm/month for H. Iaevigata and 1.1mm/month for H. scalaris) . Crustose coralline algae are the main food during the first year of life but thereafter the diet switches largely to drift algae and seagrass. Survival of newly-settled cohorts differed between years and between species. Overall, it appeared to be density Independent at low densities but density-dependent at high densities, Recruitment strength (measured at 2-1/2 - 3 years of age) and natural mortality of adults in a closed population was measured over 17 years at West I. There were sequences of strong and weak recruitments, but no relationship with presumed spawning stock size was apparent. Adult natural mortality rates ranged from 0.02 to 0.86 and were strongly density dependent. Stingrays were a major, and octopuses a minor, cause of mortality. The fecundity of H. Iaevigata was investigated at a number of sites and was adequately described by linear regressions of fecundity on total weight. Fecundity ratios and growth rate differed between sites and fecundity appears subject to phenotyplc and genotypic variation. The short and long term movement of H. laevigata was also examined, !n short term studies sexually mature Individuals aggregate during the spawning season but disperse randomly at other times of the year. In the longer term the amount of movement depends on availability of crevice space and size. Movement is also directional and, at one site, was toward that of the approaching swell. A method is described for estimating density of abalone by using a free-range search technique and adjusting for individual variation in power and efficiency of different divers and in differing degrees of habitat heterogeneity. The method is useful for estimating recruitment strength and density of abalone in surveys of abalone stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Thai river sprat (Clupeichthys aesarnensis) is a short-lived clupeid, which supports an artisanal fishery in a number of reservoirs in the Lower Mekong Basin. This study presents the C. aesarnensis biology, population dynamics and its fishery in Sirinthorn Reservoir, NE Thailand. C. aesarnensis fishery management schemes are also proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biology of three landlocked and a riverine population of Galaxias maculatus were examined in western Victoria, Australia. All systems supported reproducing populations of these fish, including Lake Corangamite which had salinities that on occasion reached 82. Spawning sites in Lake Corangamite were located in adjacent tributaries and not in the main lake as was the case for other populations. The smallest fish were found in the fresh water Lake Purrumbete and the largest in the hypersaline Lake Corangamite. The size at which 50% of the population attained sexual maturity varied across sites, with fish maturing at a smaller size in Lake Purrumbete, followed by the Merri River, Lake Bullen Merri and Lake Corangamite. Condition was higher in the freshwater Lake Purrumbete and there was no relationship between condition and temperature, conductivity, turbidity and pH; but there was a positive relationship between condition and dissolved oxygen. Length frequency analysis suggested that the majority of fishes live for a year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx3cr1gfp mice, in which the gene sequence for eGFP was knocked into the CX3CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx3cr1gfp/+ mice, we show that eGFP+ cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx3cr1gfp/+ donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx3cr1gfp/gfp (i.e., CX3CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68lowMHC-II+ subset appeared minimally affected by CX3CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX3CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract.—In 1999 and 2004, we published reports on how the introduction of 20 males into a severely inbred and isolated population of Adders halted its decline towards extinction. The introduction significantly enhanced the population’s genetic variability, which resulted in a dramatic increase in offspring viability and a rapid increase in numbers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The southern calamary, Sepioteuthis australis, is a commercially and recreationally important inshore cephalopod endemic to southern Australia and New Zealand. Typical of other cephalopods, S. australis has a short life span, form nearshore spawning aggregations and undergo direct development. Such life history traits may restrict connectivity between spawning grounds creating highly structured and genetically differentiated populations that are susceptible to population crashes. Here we use seven polymorphic microsatellite markers to assess connectivity and population structure of S. australis across a large part of its geographic range in Australia. Little genetic differentiation was found between sampling locations. Overall, FST was low (0.005, 95% CI≤<0.001-0.011) and we detected no significant genetic differentiation between any of the locations sampled. There was no strong relationship between genetic and geographical distance, and our neighbour joining analysis did not show clustering of clades based on geographical locations. Similarly, network analysis showed strong connectivity amongst most locations, in particular, Tasmania appears to be well connected with several other locations and may act as an important source population. High levels of gene flow and connectivity between S. australis sampling sites across Australia are important for this short-lived species, ensuring resilience against spatial and temporal mortality fluctuations.