6 resultados para polystyrenes

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polystyrene behaviour in reversed phase high performance liquid chromatography was influenced mainly by the solvent system, but secondary affects were observed depending on the stationary phase. A variety of reversed phase columns were investigated using mobile phase combinations of dichlorom ethane-methanol, dichloromethane-acetonitrile, ethyl acetate-methanol and ethyl acetate-acetonitrile. Several different modes of behaviour were observed depending on the polymer solubility in the solvent system. In the dichloromethane-methanol solvent system, polymer-stationary phase interactions only occurred when the molecules had pore access. Retention of excluded polystyrene depended on the kinetics of precipitation and redissolution of the polymer. Peak splitting and band broadening occurred when the kinetics were slow and molecular weight separations were limited !o oligomers and polystyrenes lower than 5-10(4) dalton. Excellent molecular weight separations of polystyrenes were obtained using gradient elution reversed phase chromatography with a dichloromethane-acetonitrile mobile phase on C18 columns. The retention was based on polymer-stationary phase interactions regardless of the column pore size. Separations were obtained on large diameter pellicular adsorbents that were almost as good as those obtained on porous adsorbents, showing that pore access was not essential for the retention of high molecular weight polystyrenes. In the best example, the separation ranged from the monomer to 10(6) dalton in a single analysis. Very little adsorption of excluded polymers was observed on C8 or phenyl columns. Polystyrene molecular weight separations to 7-10(5) dalton were obtained in an ethyl acetate-acetonitrile solvent system on C18 columns. Adsorption was responsible for retention. When an ethyl acetate-methanol solvent system was used, no molecular weight separations were obtained because of complex peak splitting. Reversed phase chromatography was compared to size exclusion chromatography for the analysis of polydisperse polystyrenes. Similar results were obtained using both methods. However, the reversed phase method was less sensitive to concentration effects and gave better resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An atomic force microscope was used to measure the forces acting between two polystyrene latex spheres in aqueous media. The results show an electrostatic repulsion at large separations which is overtaken by an attractive “hook” that pulls the two spheres into contact from a considerable range (20−400 nm), much larger than could be expected for a van der Waals attraction. The range of operation of this attraction varies from one experiment to another and is not correlated with electrolyte concentration. However, the range is found to decrease significantly when the level of dissolved gas in the water is reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanofibres having a parallel line surface texture were electrospun from cellulose acetate butyrate solutions using a solvent mixture of acetone and N,N'-dimethylacetamide. The formation mechanism of the unusual surface feature was explored and attributed to the formation of voids on the jet surface at the early stage of electrospinning and subsequent elongation and solidification of the voids into a line surface structure. The fast evaporation of a highly volatile solvent, acetone, from the polymer solution was found to play a key role in the formation of surface voids, while the high viscosity of the residual solution after the solvent evaporation ensured the line surface to be maintained after the solidification. Based on this principle, nanofibres having a similar surface texture were also electrospun successfully from other polymers, such as cellulose acetate, polyvinylidene fluoride, poly(methyl methacrylate), polystyrene and poly(vinylidene fluoride-co-hexafluoropropene), either from the same or from different solvent systems. Polarized Fourier transform infrared spectroscopy was used to measure the polymer molecular orientation within nanofibres. Schwann cells were grown on both aligned and randomly oriented nanofibre mats. The parallel line surface texture assisted in the growth of Schwann cells especially at the early stage of cell culture regardless of the fibre orientation. In contrast, the molecular orientation within nanofibres showed little impact on the cell growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-molecule nonvolatile additives based on ionic liquids (IL) as electrical conductivity enhancer in Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) was studied. Ionic liquids were investigated in the synthesis of self-assembled, highly organized hybrid nanostructures due to their ability as supramolecular solvents. Different percentage of five ionic liquids, such as 1-butyl-3-methylimidazolium tetrafluoroborate (bmim) F 4 and 1-butyl-3-methylimidazolium bromide (bmim)Br were added to a PEDOT:PSScommercial dispersion. Films of pure PEDOT:PSS showed an average conductivity of 14 S cm-1, which corresponded to the value range given by the supplier. AFM images showed that IL induced the formation of a three-dimensional conducting network with smaller PEDOT domains. The ionic character of the films was significantly increased because of the presence of ionic liquids, which can be used effectively in optoelectronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Block ionomer complexes SSEBS-c-PCL were prepared, as a consequence of proton transfer from the sulfonic acid of sulfonated polystyrene-block- poly(ethylene-ran-butylene)-block-polystyrene (SSEBS) to the tertiary amine of a tertiary amine terminated poly(?-caprolactone) (APCL). The phase behavior of SSEBS-c-PCL was thoroughly investigated and the results showed that APCL in SSEBS-c-PCL displays unique crystallization behavior owing to the influence of interactions between the amine and sulfonic acid groups as well as the effects of confinement. Further, small-angle X-ray scattering study revealed that SSEBS-c-PCL displays a less ordered micro-phase structure compared to SSEBS. A quantitative mapping of mechanical properties at the nanoscale was achieved using peak force mode atomic force microscopy. It is found that the block ionomer complex possesses a higher average elastic modulus after complexation with crystallizable APCL. Additionally, the moduli for both hard and soft phases increase and the phase with higher modulus assignable to the hard SPS component shows much more pronounced changes after complexation, confirming that APCL interacts mainly with the SPS blocks. This provides an understanding of the composition and nanomechanical properties of these new block ionomer complexes and an alternative insight into the micro-phase structures of multi-phase materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein, we report the phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs) induced by salt concentration and pH changes. The ionomers are sulfonated polystyrenes (SPSs) with different sulfonation degrees. The emulsion types were determined by conductivity measurements, confocal microscopy and optical microscopy, and the formation of HIPE organogels was verified by the tube-inversion method and rheological measurements. SPSs with high sulfonation degrees (water-soluble) and low sulfonation degrees (water-insoluble) can stabilize oil-in-water emulsions; these emulsions were transformed into water-in-oil HIPEs by varying salt concentrations and/or changing the pH. SPS, with a sulfonation degree of 11.6%, is the most efficient, and as low as 0.2 (w/v)% of the organic phase is enough to stabilize the HIPEs. Phase inversion of the oil-in-water emulsions occurred to form water-in-oil HIPEs by increasing the salt concentration in the aqueous phase. Two phase inversion points from oil-in-water emulsions to water-in-oil HIPEs were observed at pH 1 and 13. Moreover, synergetic effects between the salt concentration and pH changes occurred upon the inversion of the emulsion type. The organic phase can be a variety of organic solvents, including toluene, xylene, chloroform, dichloroethane, dichloromethane and anisole, as well as monomers such as styrene, butyl acrylate, methyl methacrylate and ethylene glycol dimethacrylate. Poly(HIPEs) were successfully prepared by the polymerization of monomers as the continuous phase in the ionomer-stabilized HIPEs.