58 resultados para polymer electrolyte

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite electrolytes of the lithium-ion-conducting ceramic Li1.3Al0.3Ti1.7(PO4)3 and polyetherurethane/lithium triflate polymer electrolyte have been prepared. Microscopy has shown that adhesion between the ceramic and polymer phases is poor, with gaps up to 1 μm at the interface. When dry, the composites are no more conductive than the pure polymer electrolyte. Exposing the samples to the vapour of solvents such as DMF, acetonitrile or water produces a significant increase in conductivity, over and beyond simple plasticization of the polymer. Pretreating the ceramic with a compatibilizing agent improves adhesion at the interface with the polymer, but decreases overall conductivity in the case investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel electrodeposition technique for preparing the catalyst layer in polymer electrolyte membrane fuel cells has been designed, which may enable an increase in the level of platinum utilisation currently achieved in these systems. This method consists of a two-step procedure involving the impregnation of platinum ions into a preformed catalyst layer (via an ion-exchange into the Nafion polymer electrolyte), followed by a potentiostatic reduction. The concentration of Nafion within the catalyst layer was found to have a significant bearing on the size of the platinum deposits. The preparation of catalyst layers containing a desired platinum loading should also be possible using this method. Surface areas of the platinum deposits were determined using cyclic voltammetry. The prepared catalyst was compared with a conventional electrode made from E-TEK Pt/C. Scanning electron microscopy was used to investigate the dispersion of the platinum particles. Platinum loadings were determined quantitatively by atomic absorption spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CrN films on a bipolar plate in polymer electrolyte membrane fuel cells have several advantages owing to their excellent corrosion resistance and mechanical properties. Three CrN samples deposited at various radio frequency (RF) powers by RF magnetron sputtering were evaluated under potentiodynamic, potentiostatic and electrochemical impedance spectroscopy conditions. The electrochemical impedance spectroscopy data were monitored for 168 h in a corrosive environment at 70 °C to determine the coating performance at +600 mVSCE under simulated cathodic conditions in a polymer electrolyte membrane fuel cell. The electrochemical behavior of the coatings increased with decreasing RF power. CrN films on the AISI 316 stainless steel substrate showed high protective efficiency and charge transfer resistance, i.e. increasing corrosion resistance with decreasing RF power. X-ray diffraction confirmed the formation of a CrN(200) preferred orientation at low RF power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A lithium-polymer battery based on an ionic liquid–polymer electrolyte (IL–PE) composite membrane operating at room temperature is described. Utilizing a polypyrrole coated LiV3O8 cathode material, the cell delivers >200 mAh g−1 with respect to the mass of the cathode material. Discharge capacity is slightly higher than those observed for this cathode material in standard aprotic electrolytes; it is thought that this is the result of a lower solubility of the LiV3O8 material in the IL–PE composite membrane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of organic additive. Three kinds of organic compounds, thiophene, 3,4-ethylenedioxythiophene and biphenyl, were used as a polymerizable monomeric additive. The organic additives were found to be electrochemically oxidized to form conductive polymer films on the electrode at high potential. By using the gel polymer electrolytes containing different organic additive, lithium metal polymer cells, composed of lithium anode and LiCoO2 cathode, were assembled and their cycling performance evaluated. Adding small amounts of a suitable polymerizable additive to the gel polymer electrolyte was found to reduce the interfacial resistance in the cell during cycling, and it thus exhibited less capacity fade and better high rate performance. Differential scanning calorimetric studies showed that the thermal stability of the fully charged LiCoO2 cathode was improved in the cell containing an organic additive.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solid polymer electrolytes based on amorphous polyether-urethane networks combined with lithium or sodium salts and a low molecular weight cosolvent (plasticizer) have been investigated in our laboratories for several years. Conductivity enhancements of up to two orders of magnitude can be obtained whilst still retaining solid elastomeric properties. In order to understand the effects of the plasticizers and their mechanism of conductivity enhancement, multinuclear NMR has been employed to investigate ionic structure in polymer electrolyte systems containing NaCF3SO3, LiCF3SO3 and LiClO3 salts.

With increasing dimethyl formamide (DMF) and propylene carbonate (PC) concentration the increasing cation chemical shift with fixed salt concentration indicates a decreasing anion-cation association consistent with an increased number of charge carriers. 13C chemical shift data for the same systems suggests that whilst DMF also decreases cation-polymer interactions, PC does the opposite, presumably by shielding cation-anion interactions. Temperature dependent 7Li spin-lattice relaxation times indicate the expected increase in ionic mobility upon plasticization with a shift of the T1 minimum to lower temperatures. The magnitude of T1 at the minimum increases upon addition of DMF whereas there is a slight decrease when PC is added. This also supports the suggestion that the DMF preferentially solvates the cation whereas the action of PC is limited to coulomb screening, hence freeing the anion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of polymer electrolytes, especially those based on polyether–lithium salt systems. In some cases, conductivity increases of more than one order of magnitude have been reported in crystalline PEO-based complexes. In this work, we report on the effects of TiO2 on a completely amorphous polyether-based system to remove the complication of multiple phases presented by the semi-crystalline nature of PEO. Multinuclear magnetic resonance spectroscopy has shown that the lithium ion environment is changed by the addition of filler. Vibrational spectroscopy shows that the filler influences the disordered-longitudinal acoustic modes (DLAM) in the case of an amorphous polyether and suggests an interaction between the filler surface and the polymer. Positron annihilation lifetime spectroscopy indicates an increase in free volume upon addition of filler to an amorphous polyether–salt complex, coinciding with an apparent increase in polymer mobility as determined from 1H T2 NMR measurements. Impedance spectroscopy has shown clear evidence of an inter-phase region that may be more or less conductive than the bulk polymer electrolyte itself. The data support a model which includes conduction through an interfacial region in addition to the bulk polymer

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurements of the glass transition temperature (Tg) and free volume behaviour of poly(acrylonitrile) (PAN) and PAN/lithium triflate (LiTf), with varying salt composition from 10 to 66 wt% LiTf, were made by positron annihilation lifetime spectroscopy (PALS). Addition of salt from 10 to 45 wt% LiTf resulted in an increase in the mean free volume cavity size at room temperature (r.t.) as measured by the orthoPositronium (oPs) pickoff lifetime, τ3, with little change in relative concentration of free volume sites as measured by oPs pickoff intensity, I3. The region from 45 to 66 wt% salt displayed no variation in relative free volume cavity size and concentration. This salt concentration range (45 wt%<[LiTf]<66 wt%) corresponds to a region of high ionic conductivity of order 10−5 to 10−6 S cm−1 at Tg as measured by PALS. A percolation phenomenon is postulated to describe conduction in this composition region. Salt addition was shown to lower the Tg as measured by PALS; Tg was 115°C for PAN and 85°C for PAN/66 wt% LiTf. The Tg and free volume behaviour of this polymer-in-salt electrolyte (PISE) was compared to a poly(ether urethane)/LiClO4 where the polymer is the major component, i.e. traditional solid polymer electrolyte (SPE). In contrast to the PISE, the Tg of the SPE was shown to increase with increasing salt concentration from 5.3 to 15.9 wt%. The relative free volume cavity size and concentration at r.t. were shown to decrease with increasing salt concentration. Ionic conductivity in this SPE was of order 10−5 S cm−1 at r.t., which is over 60°C above Tg, 10−8 S cm−1 at 25°C above Tg, and conductivity was not measurable at Tg.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

23Na and 19F nuclear magnetic resonance spectroscopy is used to investigate the effect of plasticizer addition on ionic structure and mobility in a urethane crosslinked polyether solid polymer electrolyte. The incorporation of dimethyl formamide and propylene carbonate plasticizers in a sodium triflate/polyether system results in an upfield chemical shift for the 23Na resonance consistent with decreased anion-cation association and increased cation-plasticizer interactions. The 19F resonances appears less susceptible to changes in chemical environment with only minor chemical shift changes recorded. Spin lattice relaxation measurements for the 19F nucleus are also reported. Two minima are observed in the relaxation measurements consistent with both an inter and intramolecular relaxation mechanism.