47 resultados para polyaniline (PANI)

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyaniline (PANI) nanofibres are synthesized by interfacial polymerization and their electrochemical performance is evaluated in an aqueous redox supercapacitor constituted as a two-electrode cell. The initial specific capacitance of the cell is 554 F g−1 at a constant current of 1.0 A g−1, but this value rapidly decreases on continuous cycling. In order to improve the cycleability of the supercapacitor, a composite of polyaniline with multi-walled carbon nanotubes (CNTs) is synthesized by in situ chemical polymerization. Its capacitive behaviour is evaluated in a similar cell configuration. A high initial specific capacitance of 606 F g−1 is obtained with good retention on cycling. In both supercapacitors, the effect of charging potential on cycling performances is investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acidified multi-walled carbon nanotubes (a-MWCNTs) coated with polyaniline (PANI) (a-MWCNTs@PANI) nanofiller were prepared by in situ polymerization. Novel dielectric percolative composites, sulfonated poly(aryl ether ketone) (SPAEK)/a-MWCNTs@PANI, with high dielectric constant and low dielectric loss were fabricated using simple solution blending technique. A SPAEK/a-MWCNTs@PANI composite prepared in this fashion exhibited a high dielectric constant above 800, a dielectric loss tangent less than 1.1 at 10 kHz and room temperature. The morphological study of composites by SEM suggested that the in situ polymerization method of preparing a-MWCNTs@PANI nanofillers was useful to achieve good dispersion of fillers in SPAEK matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New progresses have been made during recent years in the application of the wire beam electrode (WBE, a coupled multielectrode array) for studying electroplating of metallic coatings, for monitoring the electrodeposition of polymer coatings, and for evaluating the performance of anti-corrosion coatings. The WBE allows localized electrode processes to occur over different locations of its surface under external anodic or cathodic polarization and permits monitoring of nonuniform electrodeposition processes. Several typical experiments are presented in this paper. One sample experiment is the characterization of nonuniform electroplating of nickel coating, which was achieved by mapping the distributions of currents over a WBE surface that was under cathodic polarization. Various characteristic current distribution patterns, which indicate different electrodeposition mechanisms or low covering-power, have been observed. These patterns were found to correlate with the effects of several affecting factors such as electrolyte concentration, temperature and agitation flow. Another sample experiment is the investigation of nonuniform anodic electrodeposition of polyaniline (PANI) coatings and the understanding of their anti-corrosion performance and mechanisms. Anodic polarization currents were measured from various locations over the WBE surface in order to produce anodic polarization current maps under PANI deposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A viable method of encapsulating block copolymer micelles inside vesicles using a conjugated polymer is reported in this study. Self-assembly and complexation between an amphiphilic block copolymer poly(methyl methacrylate)-b-poly(acrylic acid) (PMMA-b-PAA) and a rod-like conjugated polymer polyaniline (PANI) in aqueous solution were studied using transmission electron microscopy, atomic force microscopy and dynamic light scattering. The complexation and morphology transformation were driven by electrostatic interaction between PANI and the PAA block of the block copolymer. Addition of PANI to PMMA-b-PAA induced the morphology transformation from micelles to irregular vesicles through vesicles, thick-walled vesicles (TWVs) and multimicellar vesicles (MMVs). Among the observed morphologies, MMVs were observed for the first time. Morphology transformation was studied as a function of aniline/acrylic acid molar ratio ([ANI]/[AA]). Micelles were observed for the pure block copolymer, while vesicles and TWVs were observed at [ANI]/[AA] = 0.1 and 0.3, respectively. MMVs were observed at [ANI]/[AA] = 0.5 and irregular vesicles were observed for molar ratios at 0.7 and above. Clearly, a conjugated polymer like polyaniline can induce a morphology transformation even at its lower concentrations and produce complex morphologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphology evolution in complexes of amphiphilic block copolymers poly(styrene)-b-poly(acrylic acid) (PS-b-PAA) and poly(styrene)-b-poly(ethylene oxide) (PS-b-PEO) in the presence of polyaniline (PANI) in aqueous solution is reported. Transmission electron microscopy, atomic force microscopy, and dynamic light scattering techniques were used to study the morphologies at various PANI contents [aniline]/[acrylic acid] ([ANI]/[AA]) ranging from 0.1 to 0.7. The interpolyelectrolyte complex formed between PAA and PANI plays a key role in the morphology transformation. Spherical micelles formed from pure block copolymers were transformed into large compound vesicles upon increasing PANI concentration due to internal block copolymer segregation. In addition to varying PANI content, the kinetic pathway of nanoparticle formation was controlled through different water addition methods and was critical in the formation of multigeometry nanoparticles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 This thesis describes the procedure for preparing polymer nanoparticles of various morphologies via simple complexation technique. The nanoparticles observed in this study may find potential application in drug delivery, diagnostic imaging, nano reactors, catalysis and preparation of stimuli responsive materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphenepyrrole/ carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g-1, making them promising in large-scale energy-storage device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, a novel chemical synthesis of polyaniline/gold nanocomposite is explored using ionic liquid (IL) 1-Butyl-3-methylimidazolium hexafluorophosphate. The direct chemical synthesis of polyaniline/gold nanocomposite was initiated via the spontaneous oxidation of aniline by AuCl4 − in IL. A nearly uniform dispersion of polyaniline/Au particles with a diameter of 450 ± 80 nm was produced by this method, which indicates that this method is more suitable for controlling particle dimensions. It was also found that the electrical conductivity of the polyaniline/gold nanocomposite was more than 100 times higher than that of the pure polyaniline nanoparticles. The polyaniline/gold nanocomposite displays superior function in the biocatalytic activation of microperoxidase-11 because of the high surface area of the assembly and the enhanced charge transport properties of the composite material. We also report the possible application of polyaniline/gold nanocomposite as a H2O2 biosensor.