40 resultados para plastic crystals

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of nano-sized ceramic particles to the plastic crystal ethyl-methyl pyrrolidinium bis(trifluoromethane sulfonyl)amide (P12TFSA) has been investigated by means of DSC and conductivity. The thermal behaviour of the plastic crystal as a function of filler content suggests that the filler particles decrease the onset temperature of the melting slightly at high loadings, however they do not decrease the crystallinity of the material. Furthermore, the IV → III transition decreases in intensity, indicating that the addition of filler increases the possibility for the crystal to remain in metastable rotator phases also at lower temperatures. The conductivity shows a more than one order of magnitude increase with the addition of filler, with a filler concentration dependence that levels out above ~ 10 wt.% TiO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of dopant levels of lithium ions (0.5 to 9.3% by mole) in the N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide (P12TFSA) plastic crystalline phase results in increases in the solid state ionic conductivity of more than 3 orders of magnitude at 298 K. Conductivities as high as 10−-4 S cm−1 at 323 K have been measured in these doped plastic crystal phases. These materials can therefore be classified as fast-ion conductors. Higher levels of Li only marginally increase the conductivity, up to around 33 mol%, followed by a slight decrease to 50 mol%. Thermal analysis behaviour has allowed the partial development of the binary phase diagram for the LiTFSA–P12TFSA system between 0–50 mol% LiTFSA, which suggests the presence of a solid solution single phase at concentrations less than 9.3 mol% LiTFSA. There is also strong evidence of eutectic behaviour in this system with a eutectic transition temperature around 308 K at 33 mol% LiTFSA. A model relating ionic conduction to phase behaviour in this system is presented. The increased conductivity upon doping has been associated with lithium ion motion via7Li solid state NMR linewidth measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doping of lithium salts and acids into the plastic crystal phase of succinonitrile has shown for the first time of the possibility of creating solid state electrolytes based on plastic crystalline solvents where the matrix itself is neutral and hence not intrinsically conductive. These materials illustrate the concept of a solid state electrolyte solvent. Room temperature conductivities up to 3.4×10−4 S cm−1 were obtained with 5 wt.% lithium bis(trifluoromethanesulfonylamide) in succinonitrile. Pulsed field gradient NMR measurements indicate that both cation and anion are mobile in this lattice. Proton conductivity was also observed when methane sulfonic acid or glacial acetic acid was used as dopants, however, the conductivity in these systems is limited by the poor dissociating ability of these acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The treatment of an organic ionic plastic crystal electrolyte N-methyl-N-ethylpyrrolidinium tetrafluoroborate (P1,2BF4) with supercritical CO2 resulted in a substantial increase in ionic conductivity, especially in the more highly ordered solid phases of the material, and also stabilised the most ordered phase to lower temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High conductivity in solid-state electrolytes is a critical requirement for many advanced energy and other electrochemical applications. Plastic crystalline materials have shown promise in this regard, and the inclusion of nanosized inorganic particles in both amorphous and crystalline materials has indicated order of magnitude enhancements in ion transport induced by space charge or other defect enhancement. In this paper we present conductivity enhancements in the plastic crystal N,N‘-ethylmethylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) induced by nanosized SiO2 particles. The addition of the nanoparticles dramatically increases plasticity and ion mobility. Positron annihilation lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion. The scaling of the conductivity with size suggests that a “trivial space charge” effect is operable, although a strain induced enhancement of defects (in particular extended defects) is also likely given the observed increase in plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choline dihydrogen phosphate ([N1.1.1.2OH]DHP) and 1-butyl-3-methylimidazolium dihydrogen phosphate ([C4mim]DHP) were synthesized as a new class of proton-conducting ionic plastic crystals. Both [N1.1.1.2OH]DHP and [C4mim]DHP showed solid–solid phase transition(s) and showed a final entropy of fusion lower than 20 J K−1 mol−1 which is consistent with Timmerman’s criterion for molecular plastic crystals. The ionic conductivity of [N1.1.1.2OH]DHP was in the range of 10−6 S cm−1–10−3 S cm−1 in the plastic crystalline phase. On the other hand, the ionic conductivity of [C4mim]DHP showed about 10−5 S cm−1 in the plastic crystalline phase. [N1.1.1.2OH]DHP showed one order of magnitude higher ionic conductivity than [C4mim]DHP in the temperature range where the plastic phase is stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into the synthesis and utilisation of organic ionic plastic crystals have made significant progress in recent years, driven by a continued need for high conductivity solid state electrolytes for a range of electrochemical devices. There are a number of different aspects to research in this area; fundamental studies, utilising a wide range of analytical techniques, of both pure and doped plastic crystals, and the development of plastic crystal-based materials as electrolytes in, for example, lithium ion batteries. Progress in these areas is highlighted and the development of new organic ionic plastic crystals, including a new class of proton conductors, is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of nanoparticles to an organic ionic plastic crystal can result in orders of magnitude increases in ionic conductivity, which makes these materials of interest as solid state electrolytes. However, this effect is not universal and depends on both the nature of the organic ionic plastic crystal and on the type of nanoparticle used. The effect of addition of TiO2, Al2O3 and SiO2 nanoparticles to a range of ionic materials with varying plasticity and rotator phase behaviour has been studied by thermal analysis and conductivity and the effect on the different materials is compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new liquid and solid state electrolytes is paramount for the advancement of electrochemical devices such as lithium batteries and solar cells. Ionic liquids have shown great promise in both these applications. Here we demonstrate the use of phosphonium cations with small alkyl chain substituents, in combination with a range of different anions, to produce a variety of new halide free ionic liquids that are fluid, conductive and with sufficient thermal stability for a range of electrochemical applications. Walden plot analysis of the new phosphonium ionic liquids shows that these can be classed as "good" ionic liquids, with low degrees of ion pairing and/or aggregation, and the lithium deposition and stripping from one of these ionic liquids has been demonstrated. Furthermore, for the first time phosphonium cations have been used to form a range of organic ionic plastic crystals. These materials can show significant ionic conductivity in the solid state and thus are of great interest as potential solid-state electrolyte materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five halogen-free orthoborate salts comprised of three different cations (cholinium, pyrrolidinium and imidazolium) and two orthoborate anions, bis(mandelato)borate and bis(salicylato)borate, were synthesised and characterised by DSC, X-ray diffraction and NMR. DSC measurements revealed that glass transition points of these orthoborate salts are in the temperature range from −18 to −2 °C. In addition, it was found that [EMPy][BScB] and [EMIm][BScB] salts have solid–solid phase transitions below their melting points, i.e. they exhibit typical features of plastic crystals. Salts of the bis(salicylato)borate anion [BScB]− have higher melting points compared with corresponding salts of the bis(mandelato)borate anion [BMB]−. Single crystal X-ray diffraction crystallography (for [Chol][BScB] crystals) and solid-state multinuclear (13C, 11B and 15N) NMR spectroscopy were employed for the structural characterisation of [Chol][BScB], [EMPy][BScB] and [EMIm][BScB], which are solids at room temperature: a strong interaction between [BScB]− anions and [Chol]+ cations was identified as (i) hydrogen bonding between OH of [Chol]+ and carbonyl groups of [BScB]− and (ii) as the inductive C–Hπ interaction. In the other salt, [EMIm][BScB], anions exhibit ππ stacking in combination with C–Hπ interactions with [EMIm]+ cations. These interactions were not identified in [EMPy][BScB] probably because of the lack of aromaticity in cations of the latter system. Our data on the formation of a lanthanum complex with bis(salicylato)borate in the liquid mixture of La3+(aq) with [Chol][BScB] suggest that this class of novel ILs can be potentially used in the extraction processes of metal ions of rare earth elements.