133 resultados para plastic anisotropy

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within each columnar grain of a metallic film, the resistance to dislocation glide varies in function of the orientation of the slip plane with regard to the grain long axis. Plastic slip is impeded across grain boundaries and this contributes to the anisotropy of the overall mechanical response. A simplified (Taylor-type) crystal plasticity model is proposed that accounts for such effect of grain shape on the slip system selection. Assuming that dislocation density gradients are normal to the grain boundaries, backstresses developed at the onset of plasticity are estimated based on two definitions of the effective grain boundary spacing ‘‘seen’’ by individual slip systems. The first one reduces to the mean area-to-perimeter ratio of cross-sections of the grain cut parallel to the slip plane. Closed-form expressions of the average backstresses developed inside grains with spheroidal shapes are introduced in the crystal hardening law. The model reproduces the very high plastic anisotropy of electro-deposited pure iron with a strong c-fiber and a refined columnar grain structure [Yoshinaga, N., Sugiura, N., Hiwatashi, S., Ushioda, K., Kada, O., 2008. Deep drawability of electro-deposited pure iron having an extremely sharp h111i//ND texture. ISIJ Int. 48, 667–670]. It also provides valid estimates of the texture development and the influence of grain size on the yield strength.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A strongly textured sheet of magnesium alloy AZ31 has been subjected to tensile testing at temperatures between ambient and 300°C. Structures have been examined by optical and transmission electron microscopy and also by atomic force microscopy to quantify surface displacements seen at grain boundaries. Plastic anisotropy varies strongly with test temperature as was observed previously by Agnew and Duygulu. The present findings do not support the view that crystallographic <c + a> becomes a major contributor to deformation at higher temperatures. Rather, the material behaviour reflects an increasing contribution from grain boundary sliding despite the relatively high strain rate (I 0-3 s-1) used in the mechanical tests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The plastic anisotropy of magnesium alloy sheet drops rapidly with test temperature. It has previously been suggested that this may be due to an increase in the activity of (c+a) dislocations. The present note points out that the phenomenon may result, instead, from the action of grain boundary sliding. This can explain the strong effect of grain size on anisotropy. Furthermore, it points to a new avenue for alloy development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asymmetric rolling (ASR) is a potential process to reach better grain refinement than in conventional rolling, thus, can lead to better mechanical properties. It is not known, however, how the introduction of a shear component will change the ideal orientations of the textures, and consequently, the evolution of plastic anisotropy. To understand the effect of the added shear on texture evolution in ASR, a stability analysis is carried out in orientation space and the variations in the position and strength of the ideal orientations are analysed as a function of the shear component. Then, modelling of R values is presented for various cases. On that basis, it is shown that there is an upper limit for the shear component in asymmetric rolling that still retains the 〈1 1 1〉 ND fibre (ND: direction normal to the sheet) which is good for formability. It is also found that better persistence of the ND fibre can be obtained by cyclically alternating the shear component. The theoretical results are well supported by comparison to experimental evidences. © 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To enable the design and optimisation of forming processes at room temperature the material behaviour of Ti-6Al-4 V needs to be accurately represented in numerical analysis and this requires an advanced material model. In particular, an accurate representation of the shape and size of the yield locus as well as its evolution during forming is important. In this study a rigorous set of experiments on the quasi-static deformation behaviour of a Ti-6Al-4 V alloy sheet sample at room temperature was conducted for various loading conditions and a constitutive material model developed. To quantify the anisotropy and asymmetry properties, tensile and compression tests were carried out for different specimen orientations. To examine the Bauschinger effect and the transient hardening behaviour in - plane tensile - compression and compression - tensile tests were performed. Balanced biaxial and plane strain tension tests were conducted to construct and validate the yield surface of the Ti-6Al-4 V alloy sheet sample at room temperature. A recently proposed anisotropic elastic-plastic constitutive material model, so-called HAH, was employed to describe the behaviour, in particular for load reversals. The HAH yield surface is composed of a stable component, which includes plastic anisotropy and is distorted by a fluctuating component. The key of the formulation is the use of a suitable yield function that reproduces the experimental observations well for the stable component. Meanwhile, the rapid evolution of the material structure must be captured at the macro - scale level by the fluctuating component embedded in the HAH model. Compared to conventional hardening equations, the proposed model leads to higher accuracy in predicting the Bauschinger effect and the transient hardening behaviour for the Ti-6Al-4 V sheet sample tested at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR). The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT) based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) are attractive as solid-state electrolytes for electrochemical devices such as lithium-ion batteries and solar and fuel cells. OIPCs offer high ionic conductivity, nonflammability, and versatility of molecular design. Nevertheless, intrinsic ion transport behavior of OIPCs is not fully understood, and their measured properties depend heavily on thermal history. Solid-state magnetic resonance imaging experiments reveal a striking image contrast anisotropy sensitive to the orientation of grain boundaries in polycrystalline OIPCs. Probing triethyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1222FSI) samples with different thermal history demonstrates vast variations in microcrystallite alignment. Upon slow cooling from the melt, microcrystallites exhibit a preferred orientation throughout the entire sample, leading to an order of magnitude increase in conductivity as probed using impedance spectroscopy. This investigation describes both a new conceptual window and a new characterization method for understanding polycrystalline domain structure and transport in plastic crystals and other solid-state conductors.