13 resultados para plasma applications

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new plasma laboratory has been established in the Institute for Frontier Materials (IFM) at Deakin University, Geelong. The two major research themes are (1) tailoring of surfaces/interfaces with new functionality, and (2) fabrication/doping of nanomaterials. The aim is to meet the challenge of better performing materials in applications ranging from energy, biomedicine and nanotechnology to composites, transport and textiles. Plasma technology offers an alternative to conventional approaches and its success depends on an improved understanding of the underlying mechanisms. We promote a team spirit in which different experts harmoniously work together. More than thirty PhD studies and collaborative projects have been undertaken and proposed since 2009 - within IFM, across the University and with outside research organisations nationally and internationally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigated the potential of improving flexural properties of natural fiber (jute) reinforced biocomposites by atmospheric pressure helium plasma treatment. Composites were made by the use of combined hand lay-up and vacuum bagging technique followed by newly developed Australia patented QuickstepTM curing. The physical properties of helium plasma modified fibers were investigated by means of wettability time, coefficient of friction (COF), atomic force microscopy (AFM) and chemical nature of the surface with ATR-FTIR and XPS. There was found a logical correlation between physical and chemical characteristics of the surface of fiber with the fracture mechanical behavior of their resulting biocomposites. In addition, the use of helium atmospheric plasma treatment prior to QuickstepTM process has proved to be a potential way to positively alter the fracture-mechanical behavior of biocomposites. This study will lead to new commercial applications of natural fiber jute for the composite industry that go beyond wrapping and packaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous materials are now becoming attractive to researchers interested in both scientific and industrial applications due to their unique combinations of physical, mechanical, thermal, electrical and acoustic properties in conjunction with excellent energy absorption characteristics. Metallic foams allow efficient conversion of impact energy into deformation work, which has led to increasing applications in energy absorption devices. In particular, foams made of aluminum and its alloys are of special interest because they can be used as lightweight panels, for energy absorption in crash situations and sound or heat absorbing functions in the automotive industry with the aim to reduce weight to improve crashworthiness, safety and comfort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smooth polymerized surfaces, suitable for biochemical and biomedical applications, were deposited using a modified plasma enhanced chemical vapour deposition method with acetylene as a reaction precursor. Horseradish peroxidase (HRP) activity assays showed that the protein immobilized on the plasma polymerized surfaces maintained its biological function for a much longer period of time compared to that on uncoated surfaces. The kinetics of HRP attachment to the plasma polymerized surfaces were analyzed using quartz crystal microbalance with dissipation analysis. Spectroscopic ellipsometry and attenuated total reflection Fourier transform infrared spectroscopy were used to determine the thickness and the quantity of the attached protein. The results showed that the plasma polymerized surfaces provided a high density of attachment sites to covalently immobilize a dense monolayer of proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combining continuous wave and pulsed plasma modes enables strong interfacial bonding of high levels of desired surface functional groups. The method has been applied to a thin film of multiwalled carbon nanotubes, a nanostructured and relatively inert material, using N2 + H2 plasma. A high density of primary amine groups (~2.6%) was achieved without damaging the tube surface. Contact angle measurements, using different probe liquids, plus model calculations of surface energy agree well with the spectroscopy and electron microscope results, i.e., the polar part shows significant changes while the non-polar part was unchanged. These results indicate that the wettability changes in the thin film of carbon nanotubes by the plasma treatment are due to the changes in surface chemistry. This confirms the effectiveness and practicality of the improved plasma method that should greatly help the use of nanotubes in applications from biomaterials to nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ribosome-inactivating proteins (RIPs) are mainly present in plants and function to inhibit protein synthesis through the removal of adenine residues from eukaryotic ribosomal RNA (rRNA). They are broadly classified into two groups: type I and type II. Type I RIPs are a diverse family of proteins comprising a single polypeptide chain, whereas type II RIPs are heterodimeric glycoproteins comprising an A-chain (functionally equivalent to a type I RIP) linked via a disulphide bond to a B chain, mediating cell entry. In this review, we describe common type I and type II RIPs, their diverse biological functions, mechanism of cell entry, stability in plasma and antigenicity. We end with a discussion of promising applications for RIPs in biomedicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240 μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2 μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240. μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2. μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates if surface modification, in conjunction with thermal transfer, will improve the adhesion of polyurethane films onto a wool fabric surface for sportswear application. Atmospheric pressure plasma and hydrogen peroxide treatments were used to enhance the surface energy of the wool fabric. Polyurethane polymer films were transferred onto the surface of treated fabrics using a hot press method. The effectiveness of different treatments to improve the adhesion of the film onto the wool surface was tested by washing fastness and the stretch recovery of polyurethane bonded fabrics. The results confirmed improvement on adhesion properties of wool bonded fabrics after different treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The difference in the chemical and physical properties of boron nitride nanotube (BNNT) films and carbon nanotube (CNT) films can benefit tissue scaffolding and engineering. However, the production of dense films of pure BNNTs is more challenging than that of CNT films. In addition, BNNT films are usually extremely nonwettable to water, so surface modification is required before they can be used in bioapplications. In this chapter, the synthesis routes of high-density BNNT films are introduced, followed by their wettability properties and surface modification by plasma treatments. The cell proliferation on both pristine and wettability-modified BNNT films is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A segmented hollow cathode (SHC) geometry was used for electrostatic confinement of plasma, and surface engineering treatments were conducted in this arrangement. The assessed processes included plasma nitriding, reactive deposition of sputtered material, and deposition of carbonaceous films by plasma-enhanced chemical vapor deposition with a bipolar pulsed-dc power supply on steel substrates. The treated specimens exhibited uniform surface morphology and deposition layers. Characterization techniques included optical microscopy, scanning electron microscopy with energy dispersive X-ray capability, and X-ray diffraction. The advantages and potential applications of the SHC arrangement are discussed in view of these results.