6 resultados para pirolisi, PFU, syngas, char, impianto pilota, pneumatici

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supporting Teachers As Researchers (STAR) was an investigation into how teachers’ professional learning might be enhanced by positioning teachers as practitioner researchers and professionals who are capable of generating change within their local educational context. The chapter presents a model of professional learning in which teachers were given space to bring renewable professional knowledge to their work as practicing teachers. Within this chapter a teacher story is used to show how teachers designed research questions, gathered evidence about their teaching and used this evidence to inform their practice. The teacher story presents the realities of everyday teaching. The elements that contribute to the overall effectiveness of this model of are presented to contribute to the debate surrounding the char-acteristics of effective professional learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How selected next generation technologies support collaborative participation between higher education students and educators within a virtual socially networked e-learning landscape and encourage the interaction of communities of learners in multiple modes, ranging from text and images accessed within the Deakin Studies Online learning management system to a constructed virtual world in which the user’s creative imagination transports them to the “other side” of their computer screens is discussed in this paper. These constructed environments enable multiple simultaneous participants to access graphically built 3D environments, interact with digital artifacts and various functional tools and represent themselves through avatars, to communicate with other participants and engage in collaborative art learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A membrane reactor allows for simultaneous separation and reaction, and thus, can play a good role to produce value-added chemicals. In this work, we demonstrated such a membrane reactor based on fluorite oxide samarium-doped ceria (SDC) using an external short-circuit concept for oxygen permeation. The fluorite phase was employed to impart its high structural stability, while its limited electronic conductivity was overcome by the application of an external short circuit to function the SDC membrane for oxygen transport. On one side of the membrane, i.e., feed side, carbon dioxide decomposition into carbon monoxide and oxygen was carried out with the aid of a Pt or Ag catalyst. The resultant oxygen was concurrently depleted on the membrane surface and transported to the other side of the membrane, favorably shifting this equilibrium-limited reaction to the product side. The transported oxygen on the permeate side with the aid of a GdNi/Al2O3 catalyst was then consumed by the reaction with methane to form syngas, i.e., carbon monoxide and hydrogen. As such, the required driving force for gas transport through the membrane can be sustained by coupling two different reactions in one membrane reactor, whose stability to withstand these different gases at high temperatures is attained in this paper. We also examined the effect of the membrane thickness, oxygen ionic transport rate, and CO2 and CH4 flow rates to the membrane reactor performance. More importantly, here, we proved the feasibility of a highly stable membrane reactor based on an external short circuit as evidenced by achieving the constant performance in CO selectivity, CH4 conversion, CO2 conversion, and O2 flux during 100 h of operation and unaltered membrane structure after this operation together with the coking resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyrolysis is the thermo-chemical conversion of carbonaceous feedstock in the absence of oxygen to produce bio-fuel (bio-oil, bio-char and syn-gas). Bio-fuel production from municipal green waste (MGW) through the pyrolysis process has attracted considerable attention recently in the renewable energy sector because it can reduce greenhouse gas emissions and contribute to energy security. This study analyses properties of MGW feedstock available in Rockhampton city of Central Queensland, Australia, and presents an experimental investigation of producing bio-fuel from that MGW through the pyrolysis process using a short sealed rotary furnace. It was found from the experiment that about 19.97% bio-oil, 40.83% bio-char and 29.77% syn-gas can be produced from the MGW. Then, a four-stage steady state simulation model is developed for pyrolysis process performance simulation using Aspen Plus software. In the first stage, the moisture content of the MGW feed is reduced. In the second stage, the MGW is decomposed according to its elemental constituents. In the third stage, condensate material is separated and, finally, the pyrolysis reactions are modelled using the Gibbs free energy minimisation approach. The MGW's ultimate and proximate analysis data were used in the Aspen Plus simulation as input parameters. The model is validated with experimentally measured data. A good agreement between simulation and experimental results was found. More specifically, the variation of modelling and experimental elemental compositions of the MGW was found to be 7.3% for carbon, 15.82% for hydrogen, 7.04% for nitrogen and 5.56% for sulphur. The validated model is used to optimise the biofuel production from the MGW as a function of operating variables such as temperature, moisture content, particle size and process heat air-fuel ratio. The modelling and optimisation results are presented, analysed and discussed.