3 resultados para photooxidation

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoyellowing of wool is a serious problem for the wool industry. This study assessed the role of photocatalytic nanocrystalline titanium dioxide (P-25) as a potential antagonist or catalyst in the photoyellowing of wool. Untreated, bleached and bleached and fluorescent-whitened wool slivers were processed into fine wool powders for the purpose of even and intimate mixing with the TiO2 nanoparticles in the solid state. Pure wool and wool/TiO2 mixtures were then compressed into solid discs for a photoyellowing study under simulated sunlight and under UVB and UVC radiations. Yellowness and photo-induced chemiluminescence (PICL) measurements showed that nanocrystalline TiO2 could effectively reduce the rate of photoyellowing by inhibiting free radical generation in doped wool, and that a higher concentration of TiO2 contributed to a lower rate of photooxidation and reduced photoyellowing. Hence nanocrystalline TiO2 acts primarily as a UV absorber on wool in dry conditions and not as a photocatalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bleached wool is rapidly yellowed by exposure to the UV radiation present in sunlight. The conventional application of a water-soluble hydroxyphenyl benzotriazole UV absorber (such as UVFast W) to bleached wool reduces its rate of photoyellowing but has a negative impact on the whiteness of the bleached wool, largely cancelling out the improvements in whiteness achieved during bleaching. However, if the UV absorber is applied to peroxide-bleached wool from a reductive bleach bath, white wool with improved photostability to sunlight and UV radiation can be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoyellowing of wool is a serious problem for the wool industry. This study assessed the role of photocatalytic nanocrystalline titanium dioxide (P-25) as a potential antagonist or catalyst in the photoyellowing of wool. Untreated, bleached and bleached and fluorescent-whitened wool slivers were processed into fine wool powders for the purpose of even and intimate mixing with the TiO2 nanoparticles in the solid state. Pure wool and wool/TiO2 mixtures were then compressed into solid discs for a photoyellowing study under simulated sunlight and under UVB and UVC radiations. Yellowness and photo-induced chemiluminescence (PICL) measurements showed that nanocrystalline TiO2 could effectively reduce the rate of photoyellowing by inhibiting free radical generation in doped wool, and that a higher concentration of TiO2 contributed to a lower rate of photooxidation and reduced photoyellowing. Hence nanocrystalline TiO2 acts primarily as a UV absorber on wool in dry conditions and not as a photocatalyst.