14 resultados para phospholipase A2

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A membrane-bound, haemolytic phospholipase A2 (PLA2) activity was detected in clinical strains of Campylobacter concisus isolated from children with gastroenteritis. The clinical strains were assigned into two molecular groups (genomospecies) based on PCR amplification of their 23S rDNA. This calcium-dependent, heat-stable, haemolytic PLA2 activity was detected in strains from both genomospecies. A crude haemolysin extract (CHE) was initially prepared from cellular outer-membrane proteins of these isolates and was further fractionated by ultrafiltration. The haemolytic activity of the extracted fraction (R30) was retained by ultrafiltration using a 30 kDa molecular mass cut-off filter, and was designated haemolysin extract (HE). Both CHE and HE had PLA2 activity and caused stable vacuolating and cytolytic effects on Chinese hamster ovary cells in tissue culture. Primers for the conserved region of pldA gene (phospholipase A gene) from Campylobacter coli amplified a gene region of 460 bp in all tested isolates, confirming the presence of a homologous PLA gene sequence in C. concisus. The detection of haemolytic PLA2 activity in C. concisus indicates the presence of a potential virulence factor in this species and supports the hypothesis that C. concisus is a possible opportunistic pathogen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently, diagnostic tests for mesenteric ischaemia and infarction are inadequate due to poor sensitivity and specificity. In addition, many potential markers appear too late to be clinically useful. At present, definitive diagnosis can only be made at the time of surgery, which is not ideal as surgery is often to be avoided in critically ill and elderly patients. A clinically useful, minimally invasive test is likely to decrease the currently very high mortality rate and allow monitoring of 'at risk' patients during their hospital stay. A two-dimensional electrophoresis based proteomic approach was undertaken to assess plasma protein differences between patients with surgically confirmed bowel infarction and control Intensive Care patients. The major protein differences were found to be members or variants of acute phase proteins. Serum amyloid A showed the largest difference between the two patient groups, and this protein was investigated in greater depth. An analysis was performed to compare the diagnostic ability of several commonly used indicators of critical illness and bowel infarction with serum amyloid A and phospholipase A2. Although none of the variables were ideal for clinical use, plasma phospholipase A2 activity showed the best discriminatory power, as determined by Receiver Operating Characteristic curves. From a review of the literature, phospholipase AI (PLA2) appeared to be increased in the bowel as a result of ischaemia and infarction. In one patient, matched tissues were obtained, and PLA2 activity was found to be significantly higher in infarcted bowel tissue compared to ischaemic bowel tissue. PLA2 activity was significantly greater in bowel lumen than tissue, suggesting that the protein was being released, and may enter the circulation. PLA2 activity was increased in the plasma of bowel infarction patients compared with control patients, though the difference was not significant. The phospholipase activity exhibited a number of similarities to typical phospholipase A2 proteins, but also showed a number of inconsistent characteristics. For this reason, we wished to identify the protein responsible for the increased phospholipase activity in infarcted human bowel. The PLA2 activity in human bowel could not be abolished by immunoprecipitation of the PLA2 isoforms IIA (well described in bowel) and V (a closely related isoform). To investigate these proteins, a native urea protein gel devised for snake venom phospholipase A2 was modified for use with mammalian phospholipase AI. The modified gel was used to show that the protein with phospholipase activity from infarcted gut was different from normal gut PLA2 and type IIA PLA2. A number of extensions were devised for these native gels and were found to be useful both in this investigation and for venom investigations. Protein purification was undertaken to identify the protein responsible for the increased phospholipase activity in infarcted bowel. Protein was purified from infarcted human bowel using a number of techniques that exploited unusual characteristics of the protein. The purification techniques each retained the native activity of the protein and the purification could therefore be monitored with a phospholipid hydrolysis assay at each stage. The protein identified by mass spectrometry was an excellent match for cyclophilin B, an inflammatory protein that had previously been identified in rat bowel at the mRNA level (Hasel et al, 1991, Kainer & Doris, 2000). As the purification progress had been monitored throughout with a phospholipid hydrolysis assay, cyclophilin B was an unexpected identification, as it is not known to have phospholipase activity. Cyclophilin B was removed from the highly purified samples via immunoprecipitation and this process abolished all phospholipase activity. The addition of cyclosporin A, (the pharmaceutical ligand of cyclophilin B), did not effect the phospholipase activity. Cyclophilin B protein was found in normal and infarcted human bowel using Western blotting. Cyclophilin B protein also appeared to be present in the bowel lumen and plasma of several patients with bowel infarction, but not in control patients. Immunohistochemistry confirmed the ubiquitous nature of cyclophilin B that had been reported by other groups. This project has investigated the use of two dimensional gel electrophoresis based proteomics to identify proteins present in the plasma of patients with confirmed bowel infarction and control intensive care patients. The major protein classes observed were members of the acute phase proteins, which highlights the need for pre-fractionation of plasma to identify lower abundance, disease associated proteins. A series of potential plasma markers were compared using Receiver Operating Characteristic Curves. Although no ideal marker was clear from this analysis, phospholipase activity appeared to warrant further investigation. Phospholipase activity was investigated in human infarcted bowel. Protein purification identified cyclophilin B as a bowel protein that showed unusual phospholipid hydrolysing activity. Cyclophilin B is a ubiquitous protein in intestinal cell types in both normal and infarcted tissue. There appears to be release of cyclophilin B into bowel lumen and plasma under conditions of mesenteric ischaemia and infarction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The high fat content in Western diets probably affects placental function during pregnancy with potential consequences for the offspring in the short and long term. The aim of the present study was to compare genome-wide placental gene expression between rat dams fed a high-fat diet (HFD) and those fed a control diet for 3 weeks before conception and during gestation. Gene expression was measured by microarray and pathway analysis was performed. Gene expression differences were replicated by real-time PCR and protein expression was assessed by Western blot analysis. Placental and fetal weights at E17.25 were not altered by exposure to the maternal HFD. Gene pathways targeting placental growth, blood supply and chemokine signalling were up-regulated in the placentae of dams fed the HFD. The up-regulation in messenger RNA expression for five genes Ptgs2 (fatty acid cyclo-oxidase 2; COX2), Limk1 (LIM domain kinase 1), Pla2g2a (phospholipase A2), Itga1 (integrin α-1) and Serpine1 was confirmed by real-time PCR. Placental protein expression for COX2 and LIMK was also increased in HFD-fed dams. In conclusion, maternal HFD feeding alters placental gene expression patterns of placental growth and blood supply and specifically increases the expression of genes involved in arachidonic acid and PG metabolism. These changes indicate a placental response to the altered maternal metabolic environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Most studies provide evidence that the skin flush response to nicotinic acid (niacin) stimulation is impaired in schizophrenia. However, only little is known about niacin sensitivity in the ultra-high risk (UHR) phase of psychotic disorders.

METHODS: We compared visual ratings of niacin sensitivity between adolescents at UHR for psychosis according to the one year transition outcome (UHR-T n = 11; UHR-NT n = 55) with healthy controls (HC n = 25) and first episode schizophrenia patients (FEP n = 25) treated with atypical antipsychotics.

RESULTS: Contrary to our hypothesis niacin sensitivity of the entire UHR group was not attenuated, but significantly increased compared to the HC group, whereas no difference could be found between the UHR-T and UHR-NT groups. As expected, niacin sensitivity of FEP was attenuated compared to HC group. In UHR individuals niacin sensitivity was inversely correlated with omega-6 and -9 fatty acids (FA), but positively correlated with phospholipase A2 (inPLA2) activity, a marker of membrane lipid repair/remodelling.

CONCLUSIONS: Increased niacin sensitivity in UHR states likely indicates an impaired balance of eicosanoids and omega-6/-9 FA at a membrane level. Our findings suggest that the emergence of psychosis is associated with an increased mobilisation of eicosanoids prior to the transition to psychosis possibly reflecting a "pro-inflammatory state", whereas thereafter eicosanoid mobilisation seems to be attenuated. Potential treatment implications for the UHR state should be further investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This was a conference oral presentation at the 2002 ASM Annual Scientific Meeting in Melbourne.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular adenosine 5′-triphosphate (ATP) is an agonist for the P2Z receptor of human leukaemic lymphocytes and opens a Ca 2+-selective ion channel, which also conducts Ba2+, Sr2+ and the small fluorescent dye, ethidium+. A wide range of receptor agonists, many of which raise cytosolic [Ca2+] activate phospholipase D (PLD). In the present study, it was shown that both ATP and 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) stimulated PLD activity in a concentration-dependent manner, and the inhibitory effects of suramin, oxidised ATP, extracellular Na+ and Mg2+ suggested that the effect of these agonists is mediated by P2Z receptors. The role of divalent cations in ATP-stimulated PLD activity was investigated. Several agonists (eg ATP, thapsigargin, ionomycin) stimulated a rise in cytosolic [Ca2+] in human lymphocytes, but only ATP and ionomycin stimulated PLD activity. When Ca2+ influx was prevented by EGTA, the majority of ATP-stimulated and all of ionomycin-stimulated PLD activity was inhibited. Preloading cells with the Ca2+ chelator, BAPTA, reduced cytosolic [Ca2+] and, paradoxically, ATP-stimulated PLD activity was potentiated. ATP-stimulated PLD activity was supported by both Ba2+ and Sr2+ when they were substituted for extracellular Ca2+. Furthermore, both ATP-stimulated PLD activity and ATP-stimulated 133Ba2+ influx showed a linear dependence on extracellular [Ba2+]. Thus it was concluded that ATP stimulated PLD activity in direct proportion to the influx of divalent cations through the P2Z ion channel and this PLD activity was insensitive to changes in bulk cytosolic [Ca2+]. The calmodulin (Ca2+/CaM) inhibitor, trifluoperazine (TFP) inhibited ionomycin- and ATP-stimulated PLD activity and ATP-stimulated apoptosis, but had no effect on PLD activity already activated by ATP. However, TFP inhibited ATP-stimulated Ca2+, Ba2+ and ethidium+ fluxes, at concentrations below those which inhibit Ca2+/CaM, suggesting that TFP inhibits the P2Z receptor. Similarly, the isoquinolinesulphonamide, KN-62, a selective inhibitor of Ca2+/CaM-dependent protein kinase II (CaMKII), also prevented ATP-stimulated apoptosis, but had no effect on pre-activated PLD. In addition, KN-62, and an analogue, KN-04, which has no effect on CaMKII, potently inhibited ATP-stimulated Ba2+ influx (IC50 12.7 ± 1.5 and 17.3 ± 2.7 nM, respectively), ATP-stimulated ethidium+ uptake (IC50 13.1 ± 2.6 and 37.2 ± 8.9 nM, respectively), ATP-stimulated phospholipase D activity (50% inhibition 5.9 ± 1.2 and 9.7 ± 2.8 nM, respectively) and ATP-induced shedding of the surface adhesion molecule, L-selectin (IC50 31.5 ± 4.5 and 78.7 ± 10.8 nM, respectively). They did not inhibit phorbol ester- or ionomycin-stimulated PLD activity or phorbol ester-induced L-selectin shedding. Neither KN-62 nor KN-04 (both 500 nM) have any effect on UTP-stimulated Ca2+ transients in fura-2-loaded human neutrophils, a response which is mediated by the P2Y2 receptor, neither did they inhibit ATP-stimulated contractile responses mediated by the P2X1 receptor of guinea pig urinary bladder. Thus, KN-62 and KN-04 are almost equipotent as P2Z inhibitors with IC50s in the nanomolar, indicating that their actions cannot be due to CaMKII inhibition, but rather that they are potent and direct inhibitors of the P2Z receptor. Extracellular ATP-induced shedding of L-selectin from lymphocytes into the medium is a Ca2+-independent response. L-selectin is either cleaved by a metalloproteinase or a PLD with specificity for glycosylphosphatidylinositol (GPI). The novel hydroxamic acid-based zinc chelator, Ro-31-9790 blocks ATP-induced L-selectin shedding, but was without effect on ATP-induced Ba2+ influx or ATP-stimulated PLD activity. Furthermore, another zinc chelator, 1,10-phenanthroline, an inhibitor of a GPI-PLD, potentiated rather than inhibited ATP-stimulated PLD activity, suggesting that ATP-induced L-selectin shedding and ATP-stimulated PLD activity are independent of each other. Although extracellular ATP is the natural ligand for the lymphocyte P2Z receptor, it is less potent than BzATP in stimulating Ba2+ influx. Concentration-response curves for BzATP- and ATP-stimulated ethidium+ influx gave EC50s 15.4 ± 1.4 µM and 85.6 ± 8.8 µM, respectively. The maximal response to ATP was only 69.8 ± 1.9% of that for BzATP. Hill coefficients were 3.17 ± 0.24 and 2.09 ± 0.45 for BzATP and ATP respectively, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z-operated ion channel. A rank order of agonist potency of BzATP > ATP = 2MeSATP > ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP > ATP > 2MeSATP > ATPγS. When ATP (300 -1000 µM) was added simultaneously with 30 µM BzATP (EC90), it reduced both ethidium+ and Ba2+ fluxes by 30 - 40% relative to values observed with BzATP alone. KN-62, previously shown to be a specific inhibitor of the lymphocyte P2Z receptor, was a less potent antagonist of BzATP-induced fluxes than ATP, when maximal concentrations of both agonists (50 and 500 µM respectively) were used. However, when BzATP (18 µM) was used at a concentration equiactive with a maximally effective ATP concentration, KN-62 showed the same inhibitory potency for both agonists. The ecto-ATPase antagonist, ARL-67156, inhibited both ATP- and BzATP-stimulated Ba2+ influx, suggesting that the lower efficacy of ATP compared with BzATP was not due to preferential hydrolysis of ATP. Thus, the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a full agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes. Both ATP- and BzATP-stimulated PLD activity were significantly inhibited (P < 0.05) when cells were suspended in iso-osmotic choline Cl medium. Choline+ was found to be a permeant for the P2Z ion channel, since ATP induced a large uptake of [14C]choline+ (60 to 150 µmol/ml intracellular water) during a 5 min incubation, which remained in the cells for several hours, and ATP was used to load cells with these levels of choline+. Intracellular choline+ inhibited ATP-, BzATP-, PMA- and ionomycin-stimulated PLD activity. Brief exposure of lymphocytes to ATP increased the subsequent basal rate of ethidium+ uptake, and this was prevented by intracellular choline+. It is proposed that P2Z-mediated Ca2+ influx in lymphocytes activates PLD leading to significantly changes of the phospholipid composition of the plasma membrane, which subsequently produces a permeability lesion, which in turn contributes to cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of group 14 tetrachlorides MCl4 (M=Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures lead to the unique complex ions [M(S2O7)3]2−, which show the central M atoms in coordination with three chelating S2O72− groups. The mean distances M[BOND]O within the anions increase from 175.6(2)–177.5(2) pm (M=Si) to 186.4(4)–187.7(4) pm (M=Ge) to 201.9(2)–203.5(2) pm (M=Sn). These distances are reproduced well by DFT calculations. The same calculations show an increasing positive charge for the central M atom in the row Si, Ge, Sn, which can be interpreted as the decreasing covalency of the M[BOND]O bonds. For the silicon compound (NH4)2[Si(S2O7)3], 29Si solid-state NMR measurements have been performed, with the results showing a signal at −215.5 ppm for (NH4)2[Si(S2O7)3], which is in very good agreement with theoretical estimations. In addition, the vibrational modes within the [MO6] skeleton have been monitored by Raman spectroscopy for selected examples, and are well reproduced by theory. The charge balance for the [M(S2O7)3]2− ions is achieved by monovalent A+ counter ions (A=NH4, Ag), which are implemented in the syntheses in the form of their sulfates. The sizes of the A+ ions, that is, their coordination requirements, cause the crystallographic differences in the crystal structures, although the complex [M(S2O7)3]2− ions remain essentially unaffected with the different A+ ions. Furthermore, the nature of the A+ ions influences the thermal behavior of the compounds, which has been monitored for selected examples by thermogravimetric differential thermal analysis (DTA/TG) and XRD measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of the group 14 tetrachlorides MCl4 (M = Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures led to the unique anionic complexes [M(S2O7)3]2– that show the central M atoms in coordination of three chelating S2O72– groups. The mean distances M–O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S2O7)3]2– anions is achieved by alkaline metal ions A+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S2O7)3]2– anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg2[Ge(S2O7)3]Cl2 which forms when HgCl2 is added as a source for the counter cation. The Hg2+ and the Cl– ions form infinite cationic chains according to 1∞[HgCl2/2]+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A2SO4 and the dioxides MO2, whereas Hg2[Ge(S2O7)3]Cl2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na2[Si(S2O7)3] has additionally been examined by solid state 29Si and 23Na NMR spectroscopic measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipase C-β1 (PLC-β1) is a critical component of multiple signalling pathways downstream of neurotransmitter receptors. Mice lacking this enzyme display a striking behavioural phenotype with relevance to human psychiatric disease. Glutamatergic dysfunction is strongly associated with several abnormal behavioural states and may underlie part of the phenotype of the phospholipase C-β1 knockout (KO) mouse. A heightened response to glutamatergic psychotomimetic drugs is a critical psychosis-related endophenotype, and in this study it was employed as a correlate of glutamatergic dysfunction. Control (n=8) and PLC-β1 KO mice (n=6) were treated with MK-801, a NMDA receptor (NMDAR) antagonist, following either standard housing or environmental enrichment, and the motor function and locomotor activity thus evoked was assessed. In addition, MK-801 binding to the NMDAR was evaluated through radioligand autoradiography in post-mortem tissue (on a drug-naive cohort). We have demonstrated a significantly increased sensitivity to the effects of the NMDA antagonist MK-801 in the PLC-β1 KO mouse. In addition, we found that this mouse line displays reduced hippocampal NMDAR expression, as measured by radioligand binding. We previously documented a reversal of specific phenotypes in this mouse line following housing in an enriched environment. Enrichment did not alter this heightened MK-801 response, nor NMDAR expression, indicating that this therapeutic intervention works on specific pathways only. These findings demonstrate the critical role of the glutamatergic system in the phenotype of the PLC-β1 KO mouse and highlight the role of these interconnected signalling pathways in schizophrenia-like behavioural disruption. These results also shed further light on the capacity of environmental factors to modulate subsets of these phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity of the cholinergic muscarinic system is associated with modulation of locomotor activity, although the precise mechanism remains unclear. The phospholipase C-[beta]1 knockout mouse displays both M1 muscarinic receptor dysfunction and a hyperactive locomotor phenotype. This mouse serves as an ideal model for the analysis of muscarinic modulation of locomotor activity. The clozapine metabolite N-desmethylclozapine (NDMC) has shown some promise as an alternative or adjunct treatment for psychotic disorders. NDMC shows strong muscarinic acetylcholine receptor affinities, which may contribute to the clinical efficacy of clozapine and account for the correlation between NDMC/clozapine ratio and treatment response. Administration of NMDC reversed a striking hyperactive phenotype in the phospholipase C-[beta]1 knockout mouse, whereas no significant effects were observed in wild-type animals. This highlights the potential role of muscarinic activity in the behavioural response to NDMC. The M1 muscarinic antagonist pirenzepine, however, also reduced the hyperactive phenotype of these mice, emphasizing the importance of muscarinic function in the control of locomotor behaviour, but also calling into question the specific mechanism of action of NMDC at muscarinic receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.