53 resultados para phase separation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of heating rate on the cure behaviour and phase separation of thermoplastic-modified epoxy systems was investigated. Polyethersulphone (PES) modified multifunctional epoxies, triglycidyl-aminophenol (TGAP) and tetraglycidyldiaminodiphenylmethane (TGDDM), as well T300/914 prepreg were used. It was shown that heating rate had a significant influence on the cure kinetics and phase structures of investigated systems. Greater heating rate causes higher epoxy conversion. The domain size of the macrophases formed from phase separation increases with the increase of heating rate. A more complete phase separation is achieved by fast heated thermoplastic-modified epoxy blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interlaminar toughening of a carbon fibre reinforced composite by interleaving a thin layer (~20 microns) of poly(hydroxyether of bisphenol A) (phenoxy) nanofibres was explored in this work. Nanofibres, free of defect and averaging several hundred nanometres, were produced by electrospinning directly onto a pre-impregnated carbon fibre material (Toray G83C) at various concentrations between 0.5 wt % and 2 wt %. During curing at 150 °C, phenoxy diffuses through the epoxy resin to form a semi interpenetrating network with an inverse phase type of morphology where the epoxy became the co-continuous phase with a nodular morphology. This type of morphology improved the fracture toughness in mode I (opening failure) and mode II (in-plane shear failure) by up to 150% and 30%, respectively. Interlaminar shear stress test results showed that the interleaving did not negatively affect the effective in-plane strength of the composites. Furthermore, there was some evidence from DMTA and FT-IR analysis to suggest that inter-domain etherification between the residual epoxide groups with the pendant hydroxyl groups of the phenoxy occurred, also leading to an increase in glass transition temperature (~7.5 °C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immiscible and miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were subjected to dynamic vulcanization to investigate the effect of crosslinking on phase separation. As a result of different processability, mixing torque behavior of miscible and immiscible blends was significantly different from one another. Scanning electron microscopy (SEM) was used to investigate the morphology of the system. After dynamic vulcanization, submicron ACM droplets were observed in the samples near the binodal curve of the system under mixing conditions. Small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) analysis were used to investigate the effect of dynamic vulcanization on the lamellar structure of the system. It was shown that for samples near the boundary of phase separation, increasing the crosslink density led to a decrease in the lamellar long period (L) as a sign of increment of crosslink density induced phase decomposition. Effects of shear rate on the final morphology of the system were investigated by changing the mixing temperature and by comparing the results of dynamic vulcanization at one phase and two phase regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acrylamide hydrogels were synthesized in the presence of various non-solvents for linear polyacrylamide to examine phase separation during polymerization. The process was found to be dependent upon the segmental volume, the chemical structure, and the concentration of the non-solvent. The concept of conversion-phase diagram for linear polymer is introduced and used qualitatively to understand polymerization induced phase separation (PIPS), and to predict the onset of PIPS during hydrogel synthesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers were successfully prepared. Two samples of PEO-PPO-PEO triblock copolymer with different ethylene oxide (EO) contents, denoted as EO30 with 30 wt % EO content and EO80 with 80 wt % EO content, were used to form the self-organized thermoset blends of varying compositions using 4,4'-methylenedianiline (MDA) as curing agent. The phase behavior, crystallization, and morphology were investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS). It was found that macroscopic phase separation took place in the MDA-cured ER/EO30 blends containing 60-80 wt % EO30 triblock copolymer. The MDA-cured ER/EO30 blends with EO30 content up to 50 wt % do not show macroscopic phase separation but exhibit nanostructures on the order of 10-30 nm as revealed by both the TEM and SAXS studies. The AFM study further shows that the ER/EO30 blend at some composition displays structural inhomogeneity at two different nanoscales and is hierarchically nanostructured. The spherical PPO domains with an average size of about 10 nm are uniformly dispersed in the 80/20 ER/EO30 blend; meanwhile, a structural inhomogeneity on the order of 50-200 nm is observed. The ER/EO80 blends are not macroscopically phase-separated over the entire composition range because of the much higher PEO content of the EO80 triblock copolymer. However, the ER/EO80 blends show composition-dependent nanostructures on the order of 10-100 nm. The 80/20 ER/EO80 blend displays hierarchical structures at two different nanoscales, i.e., a bicontinuous microphase structure on the order of about 100 nm and spherical domains of 10-20 nm in diameter uniformly dispersed in both the continuous microphases. The blends with 60 wt % and higher EO80 content are completely volume-filled with spherulites. Bundles of PEO lamellae with spacing of 20-30 nm interwoven with a microphase structure on the order of about 100 nm are revealed by AFM study for the 30/70 ER/EO80 blend.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Block copolymer systems with hydrogen bonding interactions have received relatively little attention. Recently, we have investigated the self-assembly and phase separation in such block copolymer systems with an attempt to elucidate the role of hydrogen bonding interactions both theoretically and experimentally [1-4]. In A-b-B/C diblock copolymer/homopolymer systems, the phase behavior was theoretically analyzed according to the random phase approximation and correlated with hydrogen bonding interactions in terms of the difference in inter-association constants (K). To examine how the hydrogen bonding determines the self-assembly and morphological transitions in these systems, we have introduced the K values as a new variable into the phase diagram which we established for the first time (Fig. 1). Multiple vesicular morphologies were formed in aqueous solution of A-b-B/A-b-C diblock copolymer complexes of PS-b-PAA and PS-b-PEO. Interconnected compound vesicles (ICCVs) were observed for the first time as a new morphology (Fig. 2), along with other aggregated nanostructures including vesicles, multilamellar vesicles, thick-walled vesicles and irregular aggregates. Complexation of two amphiphilic diblock copolymers provides a viable approach to vesicles in aqueous media.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of sulfonate based copolymer ionomers based on a combination of ionic liquid and sodium cations have been prepared in different ratios. This system was designed to improve the ionic conductivity of ionomers by partially replacing sodium cations with bulky cations that are less associated with anion centres on the polymer backbone. This provides more conduction sites for sodium to ‘hop’ to in the ionomers. Characterization showed the glass transition and 15N chemical shift of the ionomers did not vary significantly as the amount of Na+ varied, while the ionic conductivity increased with decreasing Na+ content, indicating conductivity is increasingly decoupled from Tg. Optical microscope images showed phase separation in all compositions, which indicated the samples were inhomogeneous. The introduction of low molecular weight plasticizer (PEG) reduced the Tg and increased the ionic conductivity significantly. The inclusion of PEG also led to a more homogeneous material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports the first instance of self-organized thermoset blends containing diblock copolymers with a crystallizable thermoset-immiscible block. Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and a low-molecular-weight (Mn = 1400) amphiphilic polyethylene-block-poly(ethylene oxide) (EEO) symmetric diblock copolymer were prepared using 4,4'-methylenedianiline (MDA) as curing agent and were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). All the MDA-cured ER/EEO blends do not show macroscopic phase separation but exhibit microstructures. The ER selectively mixes with the epoxy-miscible PEO block in the EEO diblock copolymer whereas the crystallizable PE blocks that are immiscible with ER form separate microdomains at nanoscales in the blends. The PE crystals with size on nanoscales are formed and restricted within the individual spherical micelles in the nanostructured ER/EEO blends with EEO content up to 30 wt %. The spherical micelles are highly aggregated in the blends containing 40 and 50 wt % EEO. The PE dentritic crystallites exist in the blend containing 50 wt % EEO whereas the blends with even higher EEO content are completely volume-filled with PE spherulites. The semicrystalline microphase-separated lamellae in the symmetric EEO diblock copolymer are swollen in the blend with decreasing EEO content, followed by a structural transition to aggregated spherical micellar phase morphology and, eventually, spherical micellar phase morphology at the lowest EEO contents. Three morphological regimes are identified, corresponding precisely to the three regimes of crystallization kinetics of the PE blocks. The nanoscale confinement effect on the crystallization kinetics in nanostructured thermoset blends is revealed for the first time. This new phenomenon is explained on the basis of homogeneous nucleation controlled crystallization within nanoscale confined environments in the block copolymer/thermoset blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanostructured thermoset blends were prepared based on a bisphenol A-type epoxy resin and an amphiphilic reactive diblock copolymer, namely polyisoprene-block-poly(4-vinyl pyridine) (PI-P4VP). Infrared spectra revealed that the P4VP block of the diblock copolymer reacted with the epoxy monomer. However, the non-reactive hydrophobic PI block of the diblock copolymer formed a separate microphase on the nanoscale. Ozone treatment was used to create nanoporosity in nanostructured epoxy/PI-P4VP blends via selective removal of the PI microphase and lead to nanoporous epoxy thermosets; disordered nanopores with the average diameter of about 60 nm were uniformly distributed in the blend with 50 wt% PI-P4VP. Multi-scale phase separation with a distinctly different morphology was observed at the air/sample interface due to the interfacial effects, whereas only uniform microphase separated morphology at the nanoscale was found in the bulk of the blend.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermoplastic-toughened epoxy resins are widely used as matrices in modern composite prepreg systems. Rapid curing of thermoplastic-toughened epoxy matrix composites results in different mechanical properties. To investigate the structure–property relationship, we investigated a poly(ether sulfone)-modified triglycidylaminophenol/ 4,4'-diamino diphenyl sulfone system that was cured at different heating rates. An intermediate dwell was also applied during the rapid heating of the thermoplasticmodified epoxy system. We found that a higher heating rate led to a larger domain size of the phase-separated macrostructure and also facilitated more complete phase separation. The intermediate dwell helped phase separation to proceed even further, leading to an even larger domain size of the macrostructure. A carbon-fiber-reinforced polymer matrix composite prepreg based on the poly(ether sulfone)-modified multifunctional epoxy system was cured with the same schedule. The rapidly heated composite laminates exhibited higher mode I delamination fracture toughness than the slowly heated material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The miscibility of poly(d,l-lactide-co-glycolide) (PLG) with three amphiphilic molecules and the interaction of the PLG/surfactant mixtures with DNA at air/water interface are investigated by π-A isotherms, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) techniques. The π-A isotherms of the PLG mixtures with cationic C12AzoC6PyBr, and C12AzoC6N(CH3)3Br, are quite different from the π-A isotherm of pure PLG on water subphase. In contrast to the case, the π-A isotherm of PLG mixed with nonionic C12AzoC6OPy is almost identical to the pure PLG except some increasing of molecular area. Similar phenomena are observed on DNA subphase. The in situ BAM and ex situ AFM observations demonstrate that the dispersion of PLG at air/water interface becomes good when it mixes with the two cationic surfactants, whereas quite poor due to the phase separation when it mixes with the nonionic amphiphilic molecule. Based on these results we conclude that the cationic surfactants can affect the conformation change of PLG at air/water interface and figure a well miscibility with polymer whereas the nonionic amphiphilic molecule presents poor miscibility. In addition, the even mixing of the PLG and the cationic surfactants is favorable for the adsorption to DNA more effectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we investigated the Langmuir film and Langmuir–Blodgett (LB) monolayer film of a nonionic amphiphilic molecule, 4-(6-p-pyridyloxyl)hexyloxyl-4′-dodecyloxylazobenzene (C12AzoC6Py) and its mixture with poly(d,l-lactide-co-glycolide) (PLG) at different subphase pH values (2.0, 2.6, 3.3, 4.4, and 6.5, respectively) by surface pressure–area (π–A) isotherms, in situ interface Brewster angle microscopy (BAM), and ex situ atomic force microscopy (AFM). For pure C12AzoC6Py, its π–A isotherms display a plateau when the subphase pH value is lower than 3.0. The pressure of the plateau increases with the decrease of pH until 2.0. Over the plateau, the π–A isotherms become almost identical to the one under neutral conditions. The appearance of such a plateau can be explained as the coexistence of protonation and unprotonation of pyridyl head groups of the employed amphiphile. In contrast to the homogeneous surface morphology of pure C12AzoC6Py near the plateau by BAM observation, the surface in the case of its mixing with PLG exhibits a dendritic crystalline state under low surface pressure at subphase pH lower than 3.0. The crystalline state becomes soft and gradually melts into homogeneous aggregates with surface pressure increasing to a higher value than that of the plateau. Meanwhile, the hydrolysis of PLG in the mixture system at the interface has been affirmed to be restrained to a very large extent. And the PLG was believed to be compelled to the up layer of the LB film due to the phase separation, which is examined by AFM. Based on the experimental results, the corresponding discussion was also performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esterification of acetic acid with 1-octanol was studied using a series of alkylammonium salts as Brønsted acidic ionic liquids. The following
ionic liquids were prepared and used as catalysts and mediums in the esterification reaction; [Et3NH][HSO4], [Et3NH][H2PO4], [Et3NH][BF4],
[Et3NH][p-CH3C6H4SO3], [Et2(PhCH2)NH][HSO4], [n-Bu3NH][HSO4], [n-Oct3NH][HSO4], [Et2NH2][HSO4], [Et2NH2][H2PO4], [Et2NH2]
[BF4], [i-Pr2NH2][HSO4], [EtNH3][HSO4], [EtNH3][H2PO4], and [EtNH3][BF4]. Higher acidity of the anion in the ionic liquid resulted in high yield of the ester. Yield of the ester decreased with increase in the size of the cation. There was no phase separation in the reactions where size of anion and/or cation was bigger