24 resultados para parameter tuning, swarm intelligence, controllo semaforico, auto-organizzazione

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind farms are producing a considerable portion of the world renewable energy. Since the output power of any wind farm is highly dependent on the wind speed, the power extracted from a wind park is not always a constant value. In order to have a non-disruptive supply of electricity, it is important to have a good scheduling and forecasting system for the energy output of any wind park. In this paper, a new hybrid swarm technique (HAP) is used to forecast the energy output of a real wind farm located in Binaloud, Iran. The technique consists of the hybridization of the ant colony optimization (ACO) and particle swarm optimization (PSO) which are two meta-heuristic techniques under the category of swarm intelligence. The hybridization of the two algorithms to optimize the forecasting model leads to a higher quality result with a faster convergence profile. The empirical hourly wind power output of Binaloud Wind Farm for 364 days is collected and used to train and test the prepared model. The meteorological data consisting of wind speed and ambient temperature is used as the inputs to the mathematical model. The results indicate that the proposed technique can estimate the output wind power based on the wind speed and the ambient temperature with an MAPE of 3.513%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Motion Cueing Algorithm (MCA) transforms longitudinal and rotational motions into simulator movement, aiming to regenerate high fidelity motion within the simulators physical limitations. Classical washout filters are widely used in commercial simulators because of their relative simplicity and reasonable performance. The main drawback of classical washout filters is the inappropriate empirical parameter tuning method that is based on trial-and-error, and is effected by programmers’ experience. This is the most important obstacle to exploiting the platform efficiently. Consequently, the conservative motion produces false cue motions. Lack of consideration for human perception error is another deficiency of classical washout filters and also there is difficulty in understanding the effect of classical washout filter parameters on generated motion cues. The aim of this study is to present an effortless optimization method for adjusting the classical MCA parameters, based on the Genetic Algorithm (GA) for a vehicle simulator in order to minimize human sensation error between the real and simulator driver while exploiting the platform within its physical limitations. The vestibular sensation error between the real and simulator driver as well as motion limitations have been taken into account during optimization. The proposed optimized MCA based on GA is implemented in MATLAB/Simulink. The results show the superiority of the proposed MCA as it improved the human sensation, maximized reference signal shape following and exploited the platform more efficiently within the motion constraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides a unified and comprehensive treatment of the fuzzy neural networks as the intelligent controllers. This work has been motivated by a need to develop the solid control methodologies capable of coping with the complexity, the nonlinearity, the interactions, and the time variance of the processes under control. In addition, the dynamic behavior of such processes is strongly influenced by the disturbances and the noise, and such processes are characterized by a large degree of uncertainty. Therefore, it is important to integrate an intelligent component to increase the control system ability to extract the functional relationships from the process and to change such relationships to improve the control precision, that is, to display the learning and the reasoning abilities. The objective of this thesis was to develop a self-organizing learning controller for above processes by using a combination of the fuzzy logic and the neural networks. An on-line, direct fuzzy neural controller using the process input-output measurement data and the reference model with both structural and parameter tuning has been developed to fulfill the above objective. A number of practical issues were considered. This includes the dynamic construction of the controller in order to alleviate the bias/variance dilemma, the universal approximation property, and the requirements of the locality and the linearity in the parameters. Several important issues in the intelligent control were also considered such as the overall control scheme, the requirement of the persistency of excitation and the bounded learning rates of the controller for the overall closed loop stability. Other important issues considered in this thesis include the dependence of the generalization ability and the optimization methods on the data distribution, and the requirements for the on-line learning and the feedback structure of the controller. Fuzzy inference specific issues such as the influence of the choice of the defuzzification method, T-norm operator and the membership function on the overall performance of the controller were also discussed. In addition, the e-completeness requirement and the use of the fuzzy similarity measure were also investigated. Main emphasis of the thesis has been on the applications to the real-world problems such as the industrial process control. The applicability of the proposed method has been demonstrated through the empirical studies on several real-world control problems of industrial complexity. This includes the temperature and the number-average molecular weight control in the continuous stirred tank polymerization reactor, and the torsional vibration, the eccentricity, the hardness and the thickness control in the cold rolling mills. Compared to the traditional linear controllers and the dynamically constructed neural network, the proposed fuzzy neural controller shows the highest promise as an effective approach to such nonlinear multi-variable control problems with the strong influence of the disturbances and the noise on the dynamic process behavior. In addition, the applicability of the proposed method beyond the strictly control area has also been investigated, in particular to the data mining and the knowledge elicitation. When compared to the decision tree method and the pruned neural network method for the data mining, the proposed fuzzy neural network is able to achieve a comparable accuracy with a more compact set of rules. In addition, the performance of the proposed fuzzy neural network is much better for the classes with the low occurrences in the data set compared to the decision tree method. Thus, the proposed fuzzy neural network may be very useful in situations where the important information is contained in a small fraction of the available data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a novel approach for controlling a robotic swarm to generate a geometric pattern described by a given contour, and a suitable communication scheme which enables the robots to communicate with each other as an all-to-all network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigated the cooperation of multi underwater robots to perform a task. This combined engineering design, electronics and consensus control to create systems capable of achieving the task. Challenges such as underwater radio communications were researched and a simulation framework was created and tested on virtual and real systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a probabilistic movement model for controlling ant-like agents foraging between two points. Such agents are all identical, simple, autonomous and can only communicate indirectly through the environment. These agents secrete two types of pheromone, one to mark trails towards the goal and another to mark trails back to the starting point. Three pheromone perception strategies are proposed (Strategy A, B and C). Agents that use strategy A perceive the desirability of a neighbouring location as the difference between levels of attractive and repulsive pheromone in that location. With strategy B, agents perceive the desirability of a location as the quotient of levels of attractive and repulsive pheromone. Agents using strategy C determine the product of the levels of attractive pheromone with the complement of levels of repulsive pheromone. We conduct experiments to confirm directionality as emergent property of trails formed by agents that use each strategy. In addition, we compare path formation speed and the quality of the formed path under changes in the environment. We also investigate each strategy's robustness in environments that contain obstacles. Finally, we investigate how adaptive each strategy is when obstacles are eventually removed from the scene and find that the best strategy of these three is strategy A. Such a strategy provides useful guidelines to researchers in further applications of swarm intelligence metaphors for complex problem solving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare plays an important role in promoting the general health and well-being of people around the world. The difficulty in healthcare data classification arises from the uncertainty and the high-dimensional nature of the medical data collected. This paper proposes an integration of fuzzy standard additive model (SAM) with genetic algorithm (GA), called GSAM, to deal with uncertainty and computational challenges. GSAM learning process comprises three continual steps: rule initialization by unsupervised learning using the adaptive vector quantization clustering, evolutionary rule optimization by GA and parameter tuning by the gradient descent supervised learning. Wavelet transformation is employed to extract discriminative features for high-dimensional datasets. GSAM becomes highly capable when deployed with small number of wavelet features as its computational burden is remarkably reduced. The proposed method is evaluated using two frequently-used medical datasets: the Wisconsin breast cancer and Cleveland heart disease from the UCI Repository for machine learning. Experiments are organized with a five-fold cross validation and performance of classification techniques are measured by a number of important metrics: accuracy, F-measure, mutual information and area under the receiver operating characteristic curve. Results demonstrate the superiority of the GSAM compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus helpful as a decision support system for medical practitioners in the healthcare practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Neural Networks (ANN) performance depends on network topology, activation function, behaviors of data, suitable synapse's values and learning algorithms. Many existing works used different learning algorithms to train ANN for getting high performance. Artificial Bee Colony (ABC) algorithm is one of the latest successfully Swarm Intelligence based technique for training Multilayer Perceptron (MLP). Normally Gbest Guided Artificial Bee Colony (GGABC) algorithm has strong exploitation process for solving mathematical problems, however the poor exploration creates problems like slow convergence and trapping in local minima. In this paper, the Improved Gbest Guided Artificial Bee Colony (IGGABC) algorithm is proposed for finding global optima. The proposed IGGABC algorithm has strong exploitation and exploration processes. The experimental results show that IGGABC algorithm performs better than that standard GGABC, BP and ABC algorithms for Boolean data classification and time-series prediction tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pixel color has proven to be a useful and robust cue for detection of most objects of interest like fire. In this paper, a hybrid intelligent algorithm is proposed to detect fire pixels in the background of an image. The proposed algorithm is introduced by the combination of a computational search method based on a swarm intelligence technique and the Kemdoids clustering method in order to form a Fire-based Color Space (FCS), in fact, the new technique converts RGB color system to FCS through a 3*3 matrix. This algorithm consists of five main stages:(1) extracting fire and non-fire pixels manually from the original image. (2) using K-medoids clustering to find a Cost function to minimize the error value. (3) applying Particle Swarm Optimization (PSO) to search and find the best W components in order to minimize the fitness function. (4) reporting the best matrix including feature weights, and utilizing this matrix to convert the all original images in the database to the new color space. (5) using Otsu threshold technique to binarize the final images. As compared with some state-of-the-art techniques, the experimental results show the ability and efficiency of the new method to detect fire pixels in color images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel general framework for line segment perception, which is motivated by a biological visual cortex, and requires no parameter tuning. In this framework, we design a model to approximate receptive fields of simple cells. More importantly, the structure of biological orientation columns is imitated by organizing artificial complex and hypercomplex cells with the same orientation into independent arrays. Besides, an interaction mechanism is implemented by a set of self-organization rules. Enlightened by the visual topological theory, the outputs of these artificial cells are integrated to generate line segments that can describe nonlocal structural information of images. Each line segment is evaluated quantitatively by its significance. The computation complexity is also analyzed. The proposed method is tested and compared to state-of-the-art algorithms on real images with complex scenes and strong noises. The experiments demonstrate that our method outperforms the existing methods in the balance between conciseness and completeness.