4 resultados para parallel selection

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We found an interesting relation between convex optimization and sorting problem. We present a parallel algorithm to compute multiple order statistics of the data by minimizing a number of related convex functions. The computed order statistics serve as splitters that group the data into buckets suitable for parallel bitonic sorting. This led us to a parallel bucket sort algorithm, which we implemented for many-core architecture of graphics processing units (GPUs). The proposed sorting method is competitive to the state-of-the-art GPU sorting algorithms and is superior to most of them for long sorting keys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BitTorrent (or BT) is a P2P based popular and convenient parallel downloading software tool. In this paper, we study the downloading mechanism of BitTorrent, point out some of its limitations, and propose an algorithm to improve its performance. Two major limitations of BitTorrent are, first its downloading speed is slow at the beginning of a downloading or when there is only a few clients. Second, current algorithms cannot achieve the best
parallel downloading degree as the selection of sub-pieces is random, and a file may not be downloaded when the file provider leaves the network unexpectedly. In this paper we address these problems by using neighbours in P2P networks to resolve the redundant copies and to optimise the download speed. Our preliminary experiments show that the proposed enhancement algorithm works well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Haptic rendering of complex models is usually prohibitive due to its much higher update rate requirement compared to visual rendering. Previous works have tried to solve this issue by introducing local simulation or multi-rate simulation for the two pipelines. Although these works have improved the capacity of haptic rendering pipeline, they did not take into consideration the situation of heterogeneous objects in one scenario, where rigid objects and deformable objects coexist in one scenario and close to each other. In this paper, we propose a novel idea to support interactive visuo-haptic rendering of complex heterogeneous models. The idea incorporates different collision detection and response algorithms and have them seamlessly switched on and off on the fly, as the HIP travels in the scenario. The selection of rendered models is based on the hypothesis of “parallel universes”, where the transition of rendering one group of models to another is totally transparent to users. To facilitate this idea, we proposed a procedure to convert the traditional single universe scenario into a “multiverse” scenario, where the original models are grouped and split into each parallel universe, depending on the scenario rendering requirement rather than just locality. We also proposed to add simplified visual objects as background avatars in each parallel universe to visually maintain the original scenario while not overly increase the scenario complexity. We tested the proposed idea in a haptically-enabled needle thoracostomy training environment and the result demonstrates that our idea is able to substantially accelerate visuo-haptic rendering with complex heterogeneous scenario objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Workflow temporal verification is conducted to guarantee on-time completion, which is one of the most important QoS (Quality of Service) dimensions for business processes running in the cloud. However, as today's business systems often need to handle a large number of concurrent customer requests, conventional response-time based process monitoring strategies conducted in a one-by-one fashion cannot be applied efficiently to a large batch of parallel processes because of significant time overhead. Similar situations may also exist in software companies where multiple software projects are carried out at the same time by software developers. To address such a problem, based on a novel runtime throughput consistency model, this paper proposes a QoS-aware throughput based checkpoint selection strategy, which can dynamically select a small number of checkpoints along the system timeline to facilitate the temporal verification of throughput constraints and achieve the target on-time completion rate. Experimental results demonstrate that our strategy can achieve the best efficiency and effectiveness compared with the state-of-the-art as and other representative response-time based checkpoint selection strategies.