42 resultados para parallel applications

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enterprise has not only a single cluster but a set of geographically distributed clusters – they could be used to form an enterprise grid. In this paper we show based on our case study that enterprise grids could be efficiently used as parallel computers to carry out high-performance computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research efforts of parallel processing on non-dedicated clusters have focused on high execution performance, parallelism management, transparent access to resources, and making clusters easy to use. However, as a collection of independent computers used by multiple users, clusters are susceptible to failure. This paper shows the development of a coordinated checkpointing facility for the GENESIS cluster operating system. This facility was developed by exploiting existing operating system services. High performance and low overheads are achieved by allowing the processes of a parallel application to continue executing during the creation of checkpoints, while maintaining low demands on cluster resources by using coordinated checkpointing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies have shown that most of the computers in a non-dedicated cluster are often idle or lightly loaded. The underutilized computers in a non-dedicated cluster can be employed to execute parallel applications. The aim of this study is to learn how concurrent execution of a computation-bound and sequential applications influence their execution performance and cluster utilization. The result of the study has demonstrated that a computation-bound parallel application benefits from load balancing, and at the same time sequential applications suffer only an insignificant slowdown of execution. Overall, the utilization of a non-dedicated cluster is improved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computers of a non-dedicated cluster are often idle (users attend meetings, have lunch or coffee breaks) or lightly loaded (users carry out simple computations to support problem solving activities). These underutilised computers can be employed to execute parallel applications. Thus, these computers can be shared by parallel and sequential applications, which could lead to the improvement of their execution performance. However, there is a lack of experimental study showing the applications’ performance and the system utilization of executing parallel and sequential applications concurrently and concurrent execution of multiple parallel applications on a non-dedicated cluster. Here we present the result of an experimental study into load balancing based scheduling of mixtures of NAS Parallel Benchmarks and BYTE sequential applications on a very low cost non-dedicated cluster. This study showed that the proposed sharing provided performance boost as compared to the execution of the parallel load in isolation on a reduced number of computers and better cluster utilization. The results of this research were used not only to validate other researchers’ result generated by simulation but also to support our research mission of widening the use of non-dedicated clusters. Our promising results obtained could promote further research studies to convince universities, business and industry, which require a large amount of computing resources, to run parallel applications on their already owned non-dedicated clusters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies have shown that most of the computers in a non-dedicated cluster are often idle or lightly loaded. The underutilized computers in a non-dedicated cluster can be employed to execute parallel applications. The aim of this study is to learn how concurrent execution of a computation-bound and sequential applications influence their execution performance and cluster utilization. The result of the study has demonstrated that a computation-bound parallel application benefits from load balancing, and at the same time sequential applications suffer only an insignificant slowdown of execution. Overall, the utilization of a non-dedicated cluster is improved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The single factor limiting the harnessing of the enormous computing power of clusters for parallel computing is the lack of appropriate software. Present cluster operating systems are not built to support parallel computing – they do not provide services to manage parallelism. The cluster operating environments that are used to assist the execution of parallel applications do not provide support for both Message Passing (MP) or Distributed Shared Memory (DSM) paradigms. They are only offered as separate components implemented at the user level as library and independent servers. Due to poor operating systems users must deal with computers of a cluster rather than to see this cluster as a single powerful computer. A Single System Image of the cluster is not offered to users. There is a need for an operating system for clusters. We claim and demonstrate that it is possible to develop a cluster operating system that is
able to efficiently manage parallelism, support Message Passing and DSM and offer the Single System Image. In order to substantiate the claim the first version of a cluster operating system, called GENESIS, that manages parallelism and offers the Single System Image has been developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Parallel execution is a very efficient means of processing vast amounts of data in a small amount of time. Creating parallel applications has never been easy, and requires much knowledge of the task and the execution environment used to execute parallel processes. The process of creating parallel applications can be made easier through using a compiler that automatically parallelises a supplied application. Executing the parallel application is also simplified when a well designed execution environment is used. Such an execution environment provides very powerful operations to the programmer transparently. Combining both a parallelising compiler and execution environment and providing a fully automated parallelisation and execution tool is the aim of this research. The advantage of using such a fully automated tool is that the user does not need to provide any additional input to gain the benefits of parallel execution. This report shows the tool and how it transparently supports the programmer creating parallel applications and supports their execution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently, coordinated scheduling of multiple parallel applications across computers has been considered as the critical factor to achieve high execution performance. We claim in this report that the performance and costs of the execution of parallel applications could be improved if not only dedicated clusters but also non-dedicated clusters were used and several parallel applications were executed concurreontly. To support this claim we carried out experimental study into the performance of multiple NAS parallel programs executing concurrently on a non-dedicated cluster.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computers of a non-dedicated cluster are often idle (users attend meetings, have lunch or coffee breaks) or lightly loaded (users carry out simple computations). These underutilized computers can be employed to execute parallel applications not only during weekends and at nights but also during office hours. Thus, they have to be shared by parallel and sequential applications which could lead to the improvement of their execution performance. However, there is a lack of experimental study showing the behavior and performance of parallel and sequential applications executing concurrently on clusters. We present here the result of an experimental study into load balancing based scheduling of a mixture of parallel and sequential applications on a non-dedicated cluster.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although individual PCs of a cluster are used by their owners to run sequential applications (local jobs), the cluster as a whole or its subset can also be employed to run parallel applications (cluster jobs) even during working hours. This implies that these computers have to be shared by parallel and sequential applications, which could lead to the improvement of the execution performance and resource utilization. However, there is a lack of experimental study showing the behavior and performance of executing parallel and sequential applications concurrently on a non-dedicated cluster. The result of such research would be beneficial for the development of new global scheduling algorithms. We present the result of an experimental study into scheduling of a mixture of parallel and sequential applications on a non-dedicated cluster. The aim of this study is to learn how the concurrent execution of a communication intensive parallel application and sequential applications influences their execution performance and utilization of the cluster.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dedicated clusters are becoming commonly used for high performance parallel processing. Computers of a non-dedicated cluster are often idle or lightly loaded. These under utilised computers can be employed to execute parallel applications. Thus, they have to be shared by parallel and sequential applications, which could lead to the improvement of their execution performance. There is a lack of experimental study showing the behaviour and performance of executing parallel and sequential applications concurrently on a non-dedicated cluster. We present the result of an experimental study into load balancing of a mixture of parallel and sequential applications on a non-dedicated cluster.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current attempts to manage parallel applications on Clusters of Workstations (COWs) have either generally followed the parallel execution environment approach or been extensions to existing network operating systems, both of which do not provide complete or satisfactory solutions. The efficient and transparent management of parallelism within the COW environment requires enhanced methods of process instantiation, mapping of parallel process to workstations, maintenance of process relationships, process communication facilities, and process coordination mechanisms. The aim of this research is to synthesise, design, develop and experimentally study a system capable of efficiently and transparently managing SPMD parallelism on a COW. This system should both improve the performance of SPMD based parallel programs and relieve the programmer from the involvement into parallelism management in order to allow them to concentrate on application programming. It is also the aim of this research to show that such a system, to achieve these objectives, is best achieved by adding new special services and exploiting the existing services of a client/server and microkernel based distributed operating system. To achieve these goals the research methods of the experimental computer science should be employed. In order to specify the scope of this project, this work investigated the issues related to parallel processing on COWs and surveyed a number of relevant systems including PVM, NOW and MOSIX. It was shown that although the MOSIX system provide a number of good services related to parallelism management, none of the system forms a complete solution. The problems identified with these systems include: instantiation services that are not suited to parallel processing; duplication of services between the parallelism management environment and the operating system; and poor levels of transparency. A high performance and transparent system capable of managing the execution of SPMD parallel applications was synthesised and the specific services of process instantiation, process mapping and process interaction detailed. The process instantiation service designed here provides the capability to instantiate parallel processes using either creation or duplication methods and also supports multiple and group based instantiation which is specifically design for SPMD parallel processing. The process mapping service provides the combination of process allocation and dynamic load balancing to ensure the load of a COW remains balanced not only at the time a parallel program is initialised but also during the execution of the program. The process interaction service guarantees to maintain transparently process relationships, communications and coordination services between parallel processes regardless of their location within the COW. The combination of these services provides an original architecture and organisation of a system that is capable of fully managing the execution of SPMD parallel applications on a COW. A logical design of a parallelism management system was developed derived from the synthesised system and was shown that it should ideally be based on a distributed operating system employing the client server model. The client/server based distributed operating system provides the level of transparency, modularity and flexibility necessary for a complete parallelism management system. The services identified in the synthesised system have been mapped to a set of server processes including: Process Instantiation Server providing advanced multiple and group based process creation and duplication; Process Mapping Server combining load collection, process allocation and dynamic load balancing services; and Process Interaction Server providing transparent interprocess communication and coordination. A Process Migration Server was also identified as vital to support both the instantiation and mapping servers. The RHODOS client/server and microkernel based distributed operating system was selected to carry out research into the detailed design and to be used for the implementation this parallelism management system. RHODOS was enhanced to provide the required servers and resulted in the development of the REX Manager, Global Scheduler and Process Migration Manager to provide the services of process instantiation, mapping and migration, respectively. The process interaction services were already provided within RHODOS and only required some extensions to the existing Process Manager and IPC Managers. Through a variety of experiments it was shown that when this system was used to support the execution of SPMD parallel applications the overall execution times were improved, especially when multiple and group based instantiation services are employed. The RHODOS PMS was also shown to greatly reduce the programming burden experienced by users when writing SPMD parallel applications by providing a small set of powerful primitives specially designed to support parallel processing. The system was also shown to be applicable and has been used in a variety of other research areas such as Distributed Shared Memory, Parallelising Compilers and assisting the port of PVM to the RHODOS system. The RHODOS Parallelism Management System (PMS) provides a unique and creative solution to the problem of transparently and efficiently controlling the execution of SPMD parallel applications on COWs. Combining advanced services such as multiple and group based process creation and duplication; combined process allocation and dynamic load balancing; and complete COW wide transparency produces a totally new system that addresses many of the problems not addressed in other systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently, coordinated scheduling of multiple parallel applications across computers has been considered as the critical factor to achieve high execution performance. We claim in this report that the performance and costs of the execution of parallel applications could be improved if not only dedicated clusters but also non-dedicated clusters were used and several parallel applications were executed concurreontly. To support this claim we carried out experimental study into the performance of multiple NAS parallel programs executing concurrently on a non-dedicated cluster.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We assert that companies can make more money and research institutions can improve their performance if inexpensive clusters and enterprise grids are exploited. In this paper, we have demonstrated that our claim is valid by showing the study of how programming environments, tools and middleware could be used for the execution of parallel and sequential applications, multiple parallel applications executing simultaneously on a non-dedicated cluster, and parallel applications on an enterprise grid and that the execution performance was improved. For this purpose an execution environment, and parallel and sequential benchmark applications selected for, and used in, the experiments were characterised.