24 resultados para pQCT

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To compare the skeletal benefits associated with gymnastics between ulna and radius.
Methods: 19 retired artistic gymnasts, aged 18-36 years, were compared to 24 sedentary women. Bone mineral content (BMC), total and cortical bone area (ToA, CoA), trabecular and cortical volumetric density (TrD, CoD) and cortical thickness (CoTh) were measured by pQCT at the 4% and 66% forearm.
Results: At the 4% site, BMC and ToA were more than twice greater at the radius than ulna whereas at the 66% site, BMC, ToA, CoA, CoTh and SSIpol were 20 to 51% greater at the ulna than radius in both groups (p<0.0001). At the 4% site, the skeletal benefits in BMC of the retired gymnasts over the non-gymnasts were 1.9 times greater at the radius than ulna (p<0.001), with enlarged bone size at the distal radius only. In contrast, the skeletal benefits at the 66% site were twice greater at the ulna than radius for BMC and CoA (p<0.01).
Conclusion: Whereas the skeletal benefits associated with long-term gymnastics were greater at the radius than ulna in the distal forearm, the reverse was found in the proximal forearm, suggesting both bones should be analysed when investigating forearm strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bones adapt to prevalent loading, which comprises mainly forces caused by muscle contractions. Therefore, we hypothesized that similar associations would be observed between neuromuscular performance and rigidity of bones located in the same body segment. These associations were assessed among 221 premenopausal women representing athletes in high-impact, odd-impact, highmagnitude, repetitive low-impact, and repetitive nonimpact sports and physically active referents aged 17–40 years. The whole group mean age and body mass were 23 (5) and 63 (9) kg, respectively. Bone cross sections at the tibial and fibular mid-diaphysis were assessed with peripheral quantitative computed tomography (pQCT). Density-weighted polar section modulus (SSI) and minimal and maximal crosssectional moments of inertia (Imin, Imax) were analyzed. Bone morphology was described as the Imax/Imin ratio. Neuromuscular performance was assessed by maximal power during countermovement jump (CMJ). Tibial SSI was 31% higher in the high-impact, 19% in the odd-impact, and 30% in the repetitive low-impact groups compared with the reference group (P\0.005). Only the high-impact group differed from the referents in fibular SSI (17%, P\0.005). Tibial morphology differed between groups (P = 0.001), but fibular morphology did not (P = 0.247). The bone-bygroup interaction was highly significant (P\0.001). After controlling for height, weight, and age, the CMJ peak power correlated moderately with tibial SSI (r = 0.31, P\0.001) but not with fibular SSI (r = 0.069, P = 0.313). In conclusion, observed differences in the association between neuromuscular performance and tibial and fibular traits suggest
that the tibia and fibula experience different loading

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth is the opportune time to modify bone accrual. While bone adaptation is known to be dependent on local loading and consequent deformations (strain) of bone, little is known about the effects of sex, and bone-specific physical activity on location-specific cross-sectional bone geometry during growth. To provide more insight we examined bone traits at different locations around tibial cross sections, and along the tibia between individuals who vary in terms of physical activity exposure, sex, and pubertal status. Data from 304 individuals aged 5-29 years (172 male, 132 female) were examined. Peripheral quantitative computed tomography (pQCT) was applied at 4%, 14%, 38%, and 66% of tibial length. Maturity was established by estimating age at peak height velocity (APHV). Loading history was quantified with the bone-specific physical activity questionnaire (BPAQ). Comparisons, adjusted for height, weight and age were made between sex, maturity, and BPAQ tertile groups. Few to no differences were observed between sexes or BPAQ tertiles prior to APHV, whereas marked sexual dimorphism and differences between BPAQ tertiles were observed after APHV. Cross-sectional location-specific differences between BPAQ tertiles were not evident prior to APHV, whereas clear location-specificity was observed after APHV. In conclusion, the skeletal benefits of physical activity are location-specific in the tibia. The present results indicate that the peri- or post-pubertal period is likely a more favourable window of opportunity for enhancing cross-sectional bone geometry than pre puberty. Increased loading during the peri-pubertal period may enhance the bone of both sexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effects of bed-rest, recovery and exercise countermeasures on bone density and structure at the distal tibia and radius as measured via high-resolution peripheral computed tomography. 24 subjects underwent 60-days of head-down tilt bed-rest and performed either resistive vibration exercise (RVE; n = 7), resistive exercise only (RE; n = 8) or no exercise (n = 9; 2nd Berlin BedRest Study; BBR2-2). Measurements were performed regularly during and up to 2-years after 60d bed-rest. At the distal tibia marked reductions in cortical area, cortical thickness and bone density but increases in periosteal perimeter and trabecular area were seen (p all<0.001). Recovery of most parameters occurred within 180d after bed-rest. At the distal radius, persistent increases in cortical area, cortical thickness, cortical density and total density and decreases in trabecular area were seen (p all ≤ 0.005). A significant effect of RVE (p = 0.003), but not RE, was seen on cortical area at the distal tibia, with few effects of the countermeasures observed on the remaining parameters. The current study represents the first implementation of high-resolution peripheral computed tomography in bed-rest in male subjects and helps to understand the patterns of bone remodeling due to bed-rest and recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolonged bed rest is used to simulate the effects of spaceflight and causes disuse-related loss of bone. While bone density changes during bed rest have been described, there are no data on changes in bone microstructure. Twenty-four healthy women aged 25 to 40 years participated in 60 days of strict 6-degree head-down tilt bed rest (WISE 2005). Subjects were assigned to either a control group (CON, n = 8), which performed no countermeasures; an exercise group (EXE, n = 8), which undertook a combination of resistive and endurance training; or a nutrition group (NUT, n = 8), which received a high-protein diet. Density and structural parameters of the distal tibia and radius were measured at baseline, during, and up to 1 year after bed rest by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bed rest was associated with reductions in all distal tibial density parameters (p < 0.001), whereas only distal radius trabecular density decreased. Trabecular separation increased at both the distal tibia and distal radius (p < 0.001), but these effects were first significant after bed rest. Reduction in trabecular number was similar in magnitude at the distal radius (p = 0.021) and distal tibia (p < 0.001). Cortical thickness decreased at the distal tibia only (p < 0.001). There were no significant effects on bone structure or density of the countermeasures (p ≥ 0.057). As measured with HR-pQCT, it is concluded that deterioration in bone microstructure and density occur in women during and after prolonged bed rest. The exercise and nutrition countermeasures were ineffective in preventing these changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: In order to better understand which training approaches are more effective for preventing bone loss in post-menopausal women with low bone mass, we examined the effect of a nine-month resistive exercise program with either an additional whole body vibration exercise (VIB) or balance training (BAL). METHODS: 68 post-menopausal women with osteopenia were recruited for the study and were randomised to either the VIB or BAL group. Two training sessions per week were performed. 57 subjects completed the study (VIB n=26; BAL n=31). Peripheral quantitative computed tomography (pQCT) measurements of the tibia, fibula, radius and ulna were performed at baseline and at the end of the intervention period at the epiphysis (4% site) and diaphysis (66% site). Analysis was done on an intent-to-treat approach. RESULTS: Significant increases in bone density and strength were seen at a number of measurement sites after the intervention period. No significant differences were seen in the response of the two groups at the lower-leg. CONCLUSIONS: This study provided evidence that a twice weekly resistive exercise program with either additional balance or vibration training could increase bone density at the distal tibia after a nine-month intervention period in post-menopausal women with low bone mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peripheral quantitative computed tomography (pQCT) has mainly been used as a research tool in children. To evaluate the clinical utility of pQCT and formulate recommendations for its use in children, the International Society
of Clinical Densitometry (ISCD) convened a task force to review the literature and propose areas of consensus and future research. The types of pQCT technology available, the clinical application of pQCT for bone health assessment in children, the important elements to be included in a pQCT report, and quality control monitoring techniques were evaluated. The review revealed a lack of standardization of pQCT techniques, and a paucity of data regarding differences between pQCT manufacturers, models and software versions and their impact in pediatric assessment. Measurement sites varied across studies. Adequate reference data, a critical element for interpretation of pQCT results, were entirely lacking, although some comparative data on healthy children were available. The elements of the
pQCT clinical report and quality control procedures are similar to those recommended for dual-energy X-ray absorptiometry. Future research is needed to establish evidence-based criteria for the selection of the measurement site, scan acquisition and analysis parameters, and outcome measures. Reference data that sufficiently characterize the normal range of variability in the population also need to be established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background : Female gymnasts frequently present with overt signs of hypoestrogenism, such as late menarche or menstrual dysfunction. The objective was to investigate the impact of history of amenorrhoea on the exercise-induced skeletal benefits in bone geometry and volumetric density in retired elite gymnasts.
Subjects and methods

24 retired artistic gymnasts, aged 17–36 years, who had been training for at least 15 h/week at the peak of their career and had been retired for 3–18 years were recruited. They had not been engaged in more than 2 h/week of regular physical activity since retirement. Former gymnasts who reported history of amenorrhoea (‘AME’, n = 12: either primary or secondary amenorrhoea) were compared with former gymnasts (‘NO-AME’, n = 12) and controls (‘C’, n = 26) who did not report history of amenorrhoea. Bone mineral content (BMC), total bone area (ToA) and total volumetric density (ToD) were measured by pQCT at the radius and tibia (4% and 66%). Trabecular volumetric density (TrD) and bone strength index (BSI) were measured at the 4% sites. Cortical area (CoA), cortical thickness (CoTh), medullary area (MedA), cortical volumetric density (CoD), stress–strain index (SSI) and muscle and fat area were measured at the 66% sites. Spinal BMC, areal BMD and bone mineral apparent density (BMAD) were measured by DXA.
Results

Menarcheal age was delayed in AME when compared to NO-AME (16.4 ± 0.5 years vs. 13.3 ± 0.4 years, p < 0.001). No differences were detected between AME and C for height-adjusted spinal BMC, aBMD and BMAD, TrD and BSI at the distal radius and tibia, CoA at the proximal radius, whereas these parameters were greater in NO-AME than C (p < 0.05–0.005). AME had lower TrD and BSI at the distal radius, and lower spinal BMAD than NO-AME (p < 0.05) but they had greater ToA at the distal radius (p < 0.05).
Conclusion

Greater spinal BMC, aBMD and BMAD as well as trabecular volumetric density and bone strength in the peripheral skeleton were found in former gymnasts without a history of menstrual dysfunction but not in those who reported either primary or secondary amenorrhoea. History of amenorrhoea may have compromised some of the skeletal benefits associated with high-impact gymnastics training.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone strength benefits after long-term retirement from elite gymnastics in terms of bone geometry and volumetric BMD were studied by comparing retired female gymnasts to moderately active age-matched women. In a cross-sectional study, 30 retired female gymnasts were compared with 30 age-matched moderately active controls. Bone geometric and densitometric parameters were measured by pQCT at the distal epiphyses and shafts of the tibia, femur, radius, and humerus. Muscle cross-sectional areas were assessed from the shaft scans. Independent t-tests were conducted on bone and muscle variables to detect differences between the two groups. The gymnasts had retired for a mean of 6.1 ± 0.4 yr and were engaged in ≤2 h of exercise per week since retirement. At the radial and humeral shafts, cortical cross-sectional area (CSA), total CSA, BMC, and strength strain index (SSIpol) were significantly greater (13–38%, p ≤ 0.01) in the retired gymnasts; likewise, BMC and total CSA were significantly greater at the distal radius (22–25%, p ≤ 0.0001). In the lower limbs, total CSA and BMC at the femur and tibia shaft were greater by 8–11%, and trabecular BMD and BMC were only greater at the tibia (7–8%). Muscle CSA at the forearm and upper arm was greater by 15–17.6% (p ≤ 0.001) but was not different at the upper and lower leg. Past gymnastics training is associated with greater bone mass and bone size in women 6 yr after retirement. Skeletal benefits were site specific, with greater geometric adaptations (greater bone size) in the upper compared with the lower limbs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aim: The study investigated the relationship between indices of adiposity measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) in pre-pubertal children.

Subjects and methods: DXA-derived per cent body fat (%BF) was measured in 284 boys and 288 girls, aged 7–10 years. Cross-sections of the forearm (n=427) and lower leg (n=560) were obtained by pQCT to measure total cross-sectional area of the limb (Total CSA), Muscle CSA, Fat CSA, %Fat CSA (Fat CSA/Total CSA×100) and muscle density.

Results: Peripheral QCT-derived %Fat CSA in the forearm and lower leg correlated strongly with DXA-derived %BF (r=0.83–0.89, p<0.01) in both boys and girls. However, forearm and lower leg %Fat CSA were higher than whole body %BF by 5% and 10%, respectively. A better prediction of whole-body %BF was achieved by including %Fat CSA, muscle density and height into a hierarchical regression model. Using sex-specific regression equations, 87.7% of the boys and 83.7% of the girls had a predicted %BF within 3% units of the %BF obtained by DXA.

Conclusion:
In pre-pubertal children, pQCT measures of adiposity are strongly associated with whole-body per cent body fat. This reproducible method could be an alternative technique to estimate body composition in this population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cortical bone is not a uniform tissue, and its apparent density [cortical volumetric density (vBMD)] varies around the bone cross-section as well as along the axial length of the bone. It is not yet known, whether the varying vBMD distribution is attributable to modulation in the predominant loads affecting bone. The aim of the present study was to compare the cortical bone mass distribution through the bone cortex (radial distribution) and around the center of mass (polar distribution) among 221 premenopausal women aged 17–40 years representing athletes involved in high impact, odd impact, high magnitude, repetitive low impact, repetitive non-impact sports and leisure time physical activity (referent controls). Bone cross-sections at the tibial mid-diaphysis were assessed with pQCT. Radial and polar vBMD distributions were analyzed in three concentric cortical divisions within the cortical envelope and in four cortical sectors originating from the center of the bone cross-section. MANCOVA, including age as a covariate, revealed no significant group by division/sector interaction in either radial or polar distribution, but the mean vBMD values differed between groups (P < 0.001). The high and odd-impact groups had 1.2 to 2.6% (P < 0.05) lower cortical vBMD than referents, in all analyzed sectors/divisions. The repetitive, low-impact group had 0.4 to 1.0% lower (P < 0.05) vBMD at the mid and outer cortical regions and at the anterior sector of the tibia. The high magnitude group had 1.2% lower BMD at the lateral sector (P < 0.05). The present results generate a hypothesis that the radial and polar cortical bone vBMD distributions within the tibial mid-shaft are not modulated by exercise loading but the mean vBMD level is slightly affected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary The association of long-termsport-specific exercise loading with cross-sectional geometry of the weight-bearing tibia was evaluated among 204 female athletes representing five different exercise loadings and 50 referents. All exercises involving ground impacts (e.g., endurance running, ball games, jumping) were associated with thicker cortex at the distal and diaphyseal sites of the tibia and also with large diaphyseal cross-section, whereas the high-magnitude (powerlifting) and non-impact (swimming) exercises were not. Introduction Bones adapt to the specific loading to which they are habitually subjected. In this cross-sectional study, the association of long-term sport-specific exercise loading with the geometry of the weight-bearing tibia was evaluated among premenopausal female athletes representing 11 different sports.

Methods A total of 204 athletes were divided into five exercise loading groups, and the respective peripheral quantitative computed tomographic data were compared to data obtained from 50 physically active, non-athletic referents. Analysis of covariance was used to estimate the between-group differences.

Results At the distal tibia, the high-impact, odd-impact, and repetitive low-impact exercise loading groups had ~30% to 50% (p<0.05) greater cortical area (CoA) than the referents. At the tibial shaft, these three impact groups had ~15% to 20% (p<0.05) greater total area (ToA) and ~15% to 30% (p<0.05) greater CoA. By contrast, both the high-magnitude and repetitive non-impact groups had similar ToA and CoA values to the reference group at both tibial sites.

Conclusions High-impact, odd-impact, and repetitive lowimpact exercise loadings were associated with thicker cortex at the distal tibia. At the tibial shaft, impact loading was not only associated with thicker cortex, but also a larger cross-sectional area. High-magnitude exercise loading did not show such associations at either site but was comparable to repetitive non-impact loading and reference data. Collectively, the relevance of high strain rate together with moderate-to-high strain magnitude as major determinants of osteogenic loading of the weight-bearing tibia is implicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscle mass and strength have been shown to be important factors in bone strength. Low muscular force predisposes to falling especially among elderly. Regular exercise helps to prevent falls and resulting bone fractures. Better understanding of muscle function and its importance on bone properties may thus add information to fracture prevention. Therefore the purpose of this study was to examine the relationship between bone strength and muscular force production. Twenty-young men [24 (2) years] and 20 [24 (3) years] women served as subjects. Bone compressive (BSId) and bending strength indices (50 Imax) were measured with peripheral quantitative computed tomography (pQCT) at tibial mid-shaft and at distal tibia. Ankle plantarflexor muscle volume (MV) was estimated from muscle thickness measured with ultrasonography. Neuromuscular performance was evaluated from the measurements of maximal ground reaction force (GRF) in bilateral jumping and of eccentric maximal voluntary ankle plantarflexor torque (MVC). Specific tension (ST) of the plantarflexors was calculated by dividing the MVC with the muscle volume. Activation level (AL) was measured with superimposed twitch method. Distal tibia BSId and tibial mid-shaft 50 Imax correlated positively with GRF, MVC and MV in men (r = 0.45–0.67, P\0.05). Tibial mid-shaft 50 Imax and neuromuscular performance variables were correlated in women (r = 0.46–0.59, P\0.05), whereas no correlation was seen in distal tibia. In the regression analysis, MV and ST could explain 64% of the variance in tibial mid-shaft bone strength and 41% of the variation in distal tibia bone strength. The study emphasizes that tibial strength is related to maximal neuromuscular performance. In addition, tibial mid-shaft seems to be more dependent on the neuromuscular performance, than distal tibia. In young adults, the association between bone adaptation and neuromuscular performance seems to be moderate and also site and loading specific.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The osteogenicity of a given exercise may be estimated by calculating an osteogenic index (OI) consisting of magnitude and rate of strain. Volleyball involves repetitive jumping and requires high power output and thus may be expected to be beneficial to bone and performance. The purpose of the present study was to examine if habitual volleyball playing is reflected in OI. Ten elderly habitual volleyball players [age 69.9 (SD 4.4) years] and ten matched controls volunteered [age 69.7 (4.2) years] as subjects. Distal tibia (d), tibial mid-shaft (50) and femoral neck (F) bone characteristics were measured using pQCT and DXA. To estimate skeletal rigidity, cross-sectional area (ToA50), and compressive (BSId) and bending strength indices (SSImax50) were calculated. Maximal performance was assessed with eccentric ankle plantar flexion, isometric leg press and countermovement jump (CMJ). A fast Fourier transform (FFT) was calculated from the acceleration of the center of mass during the CMJ. Maximal acceleration (MAG) and mean magnitude frequency (MMF) were selected to represent the constituents of OI. OI was calculated as the sum of the products of magnitudes and corresponding frequencies. Volleyball players had 7% larger ToA50 and 37% higher power in CMJ, 15% higher MAG and 36% higher OI (P B 0.047) than the matched controls. No difference was observed in leg press, plantar flexion or the MMF (P C 0.646). In conclusion, habitual volleyball players may be differentiated from their matched peers by their dynamic jumping performance, and the differences are reflected in the magnitude but not rate of loading.