5 resultados para oxidation of 1-butene

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MnO2 oxidation of codeine methyl ether, CME, to thebaine has been accomplished via the use of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, bmimBF4. The ionic liquid has been used to remove or extract excess MnO2 and associated impurities from the reaction mixture to afford thebaine in 36 to >95% yield. © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanofibrous carbonaceous materials (NFC) as a new class of materials having many applications, can catalyze the selective oxidation of H2S to sulfur. The correlation between NFC structure and its activity and selectivity in H2S oxidation was determined. It is demonstrated that selectivity can be improved if NFC with more ordered structure be synthesized and the portion of the original catalyst in carbon be reduced by increasing the carbon accumulated in the catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly selective and sensitive electrochemical biosensor has been developed that detects DNA hybridization by employing the electrocatalytic activity of ferrocene (Fc) bearing cyclen complexes (cyclen = 1,4,7,10-tetraazacyclododecane, Fc[Zn(cyclen)H2O]2(ClO4)4 (R1), Fc(cyclen)2 (R2), Fc[Zn(cyclen)H2O](ClO4)2 (R3), and Fc(cyclen) (R4)). A sandwich-type approach, which involves hybridization of a target probe hybridized with the preimmobilized thiolated capture probe attached to a gold electrode, is employed to fabricate a DNA duplex layer. Electrochemical signals are generated by voltammetric interrogation of a Fc bearing Zn−cyclen complexes that selectively and quantitatively binds to the duplex layers through strong chelation between the cyclen complexes and particular nucleobases within the DNA sequence. Chelate formation between R1 or R3 and thymine bases leads to the perturbation of base-pair (A−T) stacking in the duplex structure, which greatly diminishes the yield of DNA-mediated charge transport and displays a marked selectivity to the presence of the target DNA sequence. Coupling the redox chemistry of the surface-bound Fc bearing Zn−cyclen complex and dimethylamine provides an electrocatalytic pathway that increases sensitivity of the assay and allows the 100 fM target DNA sequence to be detected. Excellent selectivity against even single-base sequence mismatches is achieved, and the DNA sensor is stable and reusable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pharmacological effects of hydroxamic acids are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Previously, it was concluded that oxidation of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) by the metmyoglobin/H2O2 reaction system releases NO, which was based on spin trapping of NO and accumulation of nitrite. Reinvestigation of this system demonstrates the accumulation of N2O, which is a marker of HNO formation, at similar rates under normoxia and anoxia. In addition, the yields of nitrite that accumulated in the absence and the presence of O2 did not differ, implying that the source of nitrite is other than autoxidation of NO. In this system metmyoglobin is instantaneously and continuously converted into compound II, leading to one-electron oxidation of SAHA to its respective transient nitroxide radical. Studies using pulse radiolysis show that one-electron oxidation of SAHA (pKa=9.56 ± 0.04) yields the respective nitroxide radical (pKa=9.1 ± 0.2), which under all experimental conditions decomposes bimolecularly to yield HNO. The proposed mechanism suggests that compound I oxidizes SAHA to the respective nitroxide radical, which decomposes bimolecularly in competition with its oxidation by compound II to form HNO. Compound II also oxidizes HNO to NO and NO to nitrite. Given that NO, but not HNO, is an efficient hypoxic cell radiosensitizer, we hypothesized that under an oxidizing environment SAHA might act as a NO donor and radiosensitize hypoxic cells. Preincubation of A549 and HT29 cells with 2.5 μM SAHA for 24h resulted in a sensitizer enhancement ratio at 0.01 survival levels (SER0.01) of 1.33 and 1.59, respectively. Preincubation of A549 cells with oxidized SAHA had hardly any effect and, with 2mM valproic acid, which lacks the hydroxamate group, resulted in SER0.01=1.17. Preincubation of HT29 cells with SAHA and Tempol, which readily oxidizes HNO to NO, enhanced the radiosensitizing effect of SAHA. Pretreatment with SAHA blocked A549 cells at the G1 stage of the cell cycle and upregulated γ-H2AX after irradiation. Overall, we conclude that SAHA enhances tumor radioresponse by multiple mechanisms that might also involve its ability to serve as a NO donor under oxidizing environments.