32 resultados para orthopaedic implants

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, to enhance the strength of porous pure titanium scaffolds with high porosity, new particulate-reinforced Ti-based composites with the addition of biocompatible oxide particles such as TiO2, SiO2, ZrO2 and Nb2O5 were prepared using a powder metallurgical method. The strengths of the new particulate-reinforced titanium composites were found to be significantly higher than that of pure titanium with an excellent biocompatibility. SaOS-2 osteoblast-like cells grew and spread well on the surfaces of the new particulate-reinforced titanium composites. The present study illustrated the feasibility of using the particulate-reinforced titanium composites as an orthopaedic implant material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various types of titanium alloys with high strength and low elastic modulus and, at the same time, vanadium and aluminium free have been developed as surgical biomaterials in recent years. Moreover, porous metals are promising hard tissue implants in orthopaedic and dentistry, where they mimic the porous structure and the low elastic modulus of natural bone. In the present study, new biocompatible Ti-based alloy foams with approximate relative densities of 0.4, in which Sn and Nb were added as alloying metals, were synthesised through powder metallurgy method.
The new alloys were prepared by mechanical alloying and subsequently sintered at high temperature using a vacuum furnace. The characteristics and the processability of the ball milled powders and the new porous titanium-based alloys were characterised by X-ray diffraction, optical
microscopy and scanning electron microscopy .The mechanical properties of the new titanium alloys were examined by Vickers microhardness measurements and compression testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of artificial organs and implants for replacement of injured and diseased hard tissues such as bones, teeth and joints is highly desired in orthopedic surgery. Orthopedic prostheses have shown an enormous success in restoring the function and offering high quality of life to millions of individuals each year. Therefore, it is pertinent for an engineer to set out new approaches to restore the normal function of impaired hard tissues.

Over the last few decades, a large number of metals and applied materials have been developed with significant improvement in various properties in a wide range of medical applications. However, the traditional metallic bone implants are dense and often suffer from the problems of adverse reaction, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. Scientific advancements have been made to fabricate porous scaffolds that mimic the architecture and mechanical properties of natural bone. The porous structure provides necessary framework for the bone cells to grow into the pores and integrate with host tissue, known as osteointegration. The appropriate mechanical properties, in particular, the low elastic modulus mimicking that of bone may minimize or eliminate the stress-shielding problem. Another important approach is to develop biocompatible and corrosion resistant metallic materials to diminish or avoid adverse body reaction. Although numerous types of materials can be involved in this fast developing field, some of them are more widely used in medical applications. Amongst them, titanium and some of its alloys provide many advantages such as excellent biocompatibility, high strength-to-weight ratio, lower elastic modulus, and superior corrosion resistance, required for dental and orthopedic implants. Alloying elements, i.e. Zr, Nb, Ta, Sn, Mo and Si, would lead to superior improvement in properties of titanium for biomedical applications.

New processes have recently been developed to synthesize biomimetic porous titanium scaffolds for bone replacement through powder metallurgy. In particular, the space holder sintering method is capable of adjusting the pore shape, the porosity, and the pore size distribution, notably within the range of 200 to 500 m as required for osteoconductive applications. The present chapter provides a review on the characteristics of porous metal scaffolds used as bone replacement as well as fabrication processes of porous titanium (Ti) scaffolds through a space holder sintering method. Finally, surface modification of the resultant porous Ti scaffolds through a biomimetic chemical technique is reviewed, in order to ensure that the surfaces of the scaffolds fulfill the requirements for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffractometry (XRD) were used for the characterisation of the phase transformations of the dried gels and coated surface structures. Scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) was used for the observation and evaluation of the morphology and phases of the surface layers and for the assessment of the in vitro tests. The in vitro assessments were performed by soaking the HA/TiO2 double coated samples into the simulated body fluid (SBF) for various periods. The TiO2 layer was coated by a dipping-coating method at a speed of 12 cm/min, followed by a heat treatment at 600 °C for 20 min. The HA layer was subsequently dipping-coated on the outer surface at the same speed and then heat-treated at difference temperatures. The results indicat that the HA phase begins to crystallize after a heat treatment at 560 °C. The crystallinity increases obviously at 760 °C. SEM observations find no delamination or crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA/TiO2 coated Ti scaffolds displays excellent bone-like apatite forming ability when it is soaked into SBF. Ti scaffolds after HA/TiO2 double coatings can be anticipated as promising implant materials for orthopaedic applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on designing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibre-like structures through adjustment of the temperature in the alkali-heat treatment. The in vitro bioactivity of these structures was then evaluated by soaking the treated samples in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite-inducing ability. The Ti surface with a nanofibre-like structure showed better apatite-inducing ability than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofibre-like structure after 1 week of soaking in SBF. It is expected that the nanofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mechanical behaviour of pure titanium (Ti) foam is crucial for the design and development of Ti foam-based load-bearing implants. In this work, pure titanium foam is fabricated by a powder metallurgical process using the space-holder technique with a spacer size of 500 to 800 µm. Experimental data from static compression testing on the Ti foam are presented. The application of theoretical formulae to predict Young's modulus and yield strength of titanium foams is also discussed. A foam with 63% porosity, 87 ± 5 MPa yield strength, and 6.5 ± 1.3 GPa Young's modulus is found to be appropriate for a number of dental and orthopaedic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the finite element modeling and comparison of the stress and strain analyses were carried out for three different structures that are intact bone, stemless implant and stemmed one. Currently proposed stemless design studied here is the generic concept of stemless implant. This generic stemless implant reconstruction was numerically compared to the conventional stemmed implant and also to the intact bone as control solution. Two loading conditions were applied to the most proximal part of the models, while the most distal part was fixed for all degrees of freedom. The models were divided into two regions and studied along two paths of medial and lateral aspect. The results of this study showed that the stemless implant had less deviation from the control solution of the bone in all regions and in both loading conditions, comparing to the large deviation of the stemmed implant from the intact bone. However, it was shown that the fixation of this type of implant and its effect on sub-trochanter region must be carefully considered for designing the final product of any specific design of stemless implant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in using titanium (Ti) alloys as load-bearing implant materials has increased due to their high strength to weight ratio, lower elastic modulus, and superior biocompatibility and enhanced corrosion resistance compared to conventional metals such as stainless steel and Co-Cr alloys. In the present study, the in vitro cytotoxicity of five binary titanium alloys, Ti15Ta, Ti15Nb, Ti15Zr, Ti15Sn and Ti15Mo, was assessed using human osteosarcoma cell line, SaOS-2 cells. The Cell proliferation and viability were determined, and cell adhesion and morphology on the surfaces of the binary Ti alloys after cell culture were observed by SEM. Results indicated that the Ti binary alloys of Ti15Ta, Ti15Nb and Ti15Zr exhibited the same level of excellent biocompatibility; Ti15Sn alloy exhibited a moderate biocompatibility while Ti15Mo alloy exhibited a moderate cytotoxicity. The SaOS-2 osteoblast-like cells had flattened and spread across the surfaces of the Ti15Ta, Ti15Nb, Ti15Zr and Ti15Sn groups; however, the cell shapes on the Ti15Mo alloy was shrinking and unhealthy. These results indicated that the Mo contents should be limited to a certain level in the design and development of new Ti alloys for implant material applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on developing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibrelike structures through adjustment of the temperature in the alkali treatment. The in vitro bioactivity of these structures was then evaluated by soaking in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite inducing ability. The Ti surface with a nanofiber-like structure showed better apatite inducing ability, than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofiberlike structure after 1 week soaking in SBF. It is expected that the anofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation in vivo.