16 resultados para optical and electrical properties

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticulate TiO2 is of interest for a variety of technological applications, including optically transparent UV-filters and photocatalysts for the destruction of chemical waste. The successful use of nanoparticulate TiO2 in such applications requires an understanding of how the synthesis conditions effect the optical and photocatalytic properties. In this study, we have investigated the effect of heat treatment temperature on the properties of nanoparticulate TiO2 powders that were synthesised by solid-state chemical reaction of anhydrous TiOSO4 with Na2CO3. It was found that the photocatalytic activity increased with the heat treatment temperature up to a maximum at 600 °C and thereafter declined. In contrast, the optical transparency decreased monotonically with the heat treatment temperature. These results indicate that solid-state chemical reaction can be used to prepare powders of nanoparticulate TiO2 with properties that are optimised for use as either optically transparent UV-filters or photocatalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO2) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO2 nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO2 directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO2 nanotube wall thickness of 30-40nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro-nano-electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation and uniform dispersion of carbon nanotubes (CNTs) in polymer matrix could facilitate engineers to create high performance nanocomposites that potentially compete with most advanced materials in nature. The unique combination of outstanding mechanical, thermal, and electrical properties of CNTs makes them excellent nanofillers for the fabrication of advanced materials. Successful enhancement in mechanical properties via reinforcement is expected only when the nanofillers are well dispersed in the polymer matrix. Moreover, the orientation as well as the CNT/matrix interfacial strength also determines the effective physical properties of the nanocomposites. However, CNTs typically assemble to give bundles, which are heavily entangled to each other with a high aspect ratio and a large π-electronic surface. In this work, we outline some preliminary results in preparing high performance epoxy composites. Composites with fine dispersion and superior mechanical properties were prepared using epoxy and multiwalled carbon nanotubes (MWCNTs). The fine dispersion of the nanocomposites can be identified in the high resolution SEM image shown in Figure 1. This method can provide an alternative route for the preparation of new structural and functional nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing demand for high performance composites with enhanced mechanical and electrical properties. Carbon nanofibres offer a promising solution but their effectiveness has been limited by difficulty in achieving directional alignment. Here we report the use of an alternating current (AC) electric field to align carbon nanofibres in an epoxy. During the cure process of an epoxy resin, carbon nanofibres (CNFs) are observed to rotate and align with the applied electric field, forming a chain-like structure. The fracture energies of the resultant epoxy nanocomposites containing different concentrations of CNFs (up to 1.6wt%) are measured using double cantilever beam specimens. The results show that the addition of 1.6wt% of aligned CNFs increases the electrical conductivity of such nanocomposites by about seven orders of magnitudes to 10<sup>-2</sup>S/m and increases the fracture energy, G<inf>Ic</inf>, by about 1600% from 134 to 2345J/m<sup>2</sup>. A modelling technique is presented to quantify this major increase in the fracture energy with aligned CNFs. The results of this research open up new opportunities to create multi-scale composites with greatly enhanced multifunctional properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weight reduction increased the amount of deposited polypyrrole (PPy) on the polyester (PET) fiber surface, leading to a considerable decrease in electrical resistance and improved heat generation capacity for the PPy coated PET fabrics. Application of dc voltages to an insulated roll of PPy-coated fabric increased the temperature to about 90 °C. This showed the suitability of these fabrics for heating applications. The optimum PPy deposition of about 2.8% was obtained in samples weight reduced by aqueous sodium hydroxide treatment. AFM images revealed a smooth surface morphology of the untreated fiber whereas the treated fiber had a high surface roughness.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, mechanochemical processing has been used to manufacture a nanoparticulate powder of ZnO with a controlled particle size and minimal hard agglomeration. The suitability of this ZnO powder for use as either a photocatalyst or an optically transparent UV-filter was evaluated by comparing its optical and photocatalytic properties with those of three commercially available powders that were synthesised by chemical precipitation and flame pyrolysis. The ZnO powder synthesised by mechanochemical processing was found to exhibit high optical transparency and low photocatalytic activity per unit of surface area, which indicates that it is suitable for use in optically transparent UV-filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of additions of Nb, A1 and Mo to Fe-C-Mn-Si TRIP steels on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. Laboratory simulations of continuous cooling during TMP were performed using a quench deformation dilatometer, while laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. From this a comprehensive understanding of the structural and kinetic aspects of the bainite transformation in these types of TRIP steels has been developed. All samples were characterised using optical microscopy and XRD. The relationships between the morphology of bainitic structure, volume fraction, stability of RA and mechanical properties were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were studied in two CMnSi TRansformation-Induced Plasticity (TRIP) steels with different microstructures after intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength increase with some reduction in ductility after pre-straining and bake hardening treatment. The following main microstructural changes are responsible for the observed mechanical behaviours: a decrease in the volume fl:action of retained austenite, a increase in the dislocation density and the formation of cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were studied in two CMnSi TRansformation-Induced Plasticity (TRIP) steels with different microstructures after intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength increase with some reduction in ductility after pre-straining and bake hardening treatment. The following main microstructural changes are responsible for the observed mechanical behaviours: a decrease in the volume fraction of retained austenite, an increase in the dislocation density and the formation of cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigated the microstructural characterization and mechanical properties of Mg-Zr-Ca alloys prepared by hot-extrusion for potential use in biomedical applications. Mg-Zr-Ca alloys were fabricated by commercial pure Mg (99.9%), Ca (99.9%), and master Mg-33% Zr alloy (mass%). The microstructural characterization of the hot-extruded Mg-Zr-Ca alloys was examined by X-ray diffraction analysis and optical microscopy, and the mechanical properties were determined from tensile tests. The experimental results indicate that the hot-extruded Mg-Zr-Ca alloys with 1 mass% Ca are composed of one single phase and those alloys with 2 mass% Ca consist of both Mg2Ca and α phase. The hot-extruded Mg-Zr-Ca alloys exhibit equiaxed granular microstructures and the hot-extrusion process can effectively increase both the tensile strength and ductility of Mg-Zr-Ca alloys. The hot-extruded Mg-1Zr-1Ca alloy (mass%) exhibits the highest strength and best ductility among all the alloys, and has much higher strength than the human bone, suggesting that it has a great potential to be a good candidate for biomedical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi2Te3 based alloy nanosheet (NS)/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) composite films were prepared separately by spin coating and drop casting techniques. The drop cast composite film containing 4.10 wt % Bi2Te3 based alloy NSs showed electrical conductivity as high as 1295.21 S/cm, which is higher than that (753.8 S/cm) of a dimethyl sulfoxide doped PEDOT:PSS film prepared under the same condition and that (850-1250 S/cm) of the Bi2Te3 based alloy bulk material. The composite film also showed a very high power factor value, ∼32.26 μWm(-1) K(-2). With the content of Bi2Te3 based alloy NSs increasing from 0 to 4.10 wt %, the electrical conductivity and Seebeck coefficient of the composite films increase simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the AlxCoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA[U+05F3]s.