15 resultados para olfactory bulbs

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to document the positive and negative characteristics of using compact fluorescent lamps (CFL) and to raise awareness and debate about the potential negative health effects resulting from prolonged exposure to CFLs. This is a theoretical paper and, primarily, incorporates the literature and the author’s experiences of CFLs. Governmental and non-governmental measures in the area of recycling and disposal of CFLs are also presented. This is a relatively new area of research; hence, very limited academic literature is currently available. Discussion of the issue of increased usage of CFLs is timely following heightened debate on greenhouse gas emissions and climate change. Increased debate amongst the policy and decision-makers will assist the public to make an informed decision. It is also anticipated that this debate will put pressure on the manufacturers of all types of bulbs, and government and non-governmental agencies to enhance their own and community initiatives to recycle and/or safely dispose of CFLs. No other similar review of the advantages and weaknesses of using CFLs has been undertaken that encourages the reader and potential users of CFLs to reflect on their choices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx3cr1gfp mice, in which the gene sequence for eGFP was knocked into the CX3CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx3cr1gfp/+ mice, we show that eGFP+ cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx3cr1gfp/+ donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx3cr1gfp/gfp (i.e., CX3CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68lowMHC-II+ subset appeared minimally affected by CX3CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX3CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Through behavioural experiments, I discovered that crimson rosellas could discriminate between species, subspecies and sexes based on odour alone. Chemical analysis revealed that plumage odour differed between subspecies, season, sex and age. Finally, I found that putative mammalian competitors and predators of the species could detect the plumage odour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extremely important component of descriptive analysis is training panellists to achieve consistent results. The effectiveness of mental imagery as a training strategy has been shown in several areas such as sport and music. In this study, researchers from the University of Bordeaux in France assessed if olfactory mental imagery could be a tool for training the olfactory capacities of panellists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are members of a family of hormones that play an important role in mammalian fluid and electrolyte balance. In the periphery, natriuretic peptides reduce blood volume and subsequently blood pressure by increasing renal natriuresis and diuresis and relaxation of vascular smooth muscle. The actions of natriuretic peptides are mediated via two membrane-linked guanylate cyclase receptors (NPR-GC); natriuretic peptide receptor-A (NPR-A) which has a high affinity for ANP and BNP; and natriuretic peptide receptor-B (NPR-B)which has the greatest affinity for CNP. A third receptor not linked to guanylate cyclase, natriuretic peptide receptor-C (NPR-C) also exists, which binds to ANP, BNP and CNP with a relatively equal affinity, and is involved with clearance of the peptides from the circulation and tissues. The natriuretic peptides are present in the brain and are particularly predominant in cardiovascular and fluid and electrolyte regulating areas such as the anteroventral third ventricle (AV3V) region. This distribution has led to the suggestion natriuretic peptides play a neuromodulatory role in the central control of fluid homeostasis. Natriuretic peptides in the brain have been observed to inhibit the release of other fluid and electrolyte regulating hormones such as arginine vasopressin (AVP) and angiotensin II (AII). Natriuretic peptides have also been identified in the non-mammalian vertebrates although information regarding the distribution of the peptides and their receptors in the non-mammalian brain is limited. In amphibians, immunohistochemical studies have shown that natriuretic peptides are highly concentrated in the preoptic region of the brain, an area believed to be analogous to the A\T3\ region in mammals, which suggests that natriuretic peptides may also be involved in central fluid and electrolyte regulation in amphibians. To date, CNP is the only natriuretic peptide that has been isolated and cloned from the lower vertebrate brain, although studies on the distribution of CNP binding sites in the brain have only been performed in one fish species. Studies on the distribution of ANP binding sites in the lower vertebrate brain are similarly limited and have only been performed in one fish and two amphibian species. Moreover, the nature and distribution of the natriuretic peptide receptors has not been characterised. The current study therefore, used several approaches to investigate the distribution of natriuretic peptides and their receptors in the brain of the amphibian Bufo marinus. The topographical relationship of natriuretic peptides and the fluid and electrolyte regulating hormone arginine vasotocin was also investigated, in order to gain a greater understanding of the role of the natriuretic peptide system in the lower vertebrate brain. Immunohistochemical studies showed natriuretic peptides were distributed throughout the brain and were highly concentrated in the preoptic region and interpeduncular nucleus. No natriuretic peptide-like immunoreactivity (NP-IR) was observed in the pituitary gland. Arginine vasotocin-like immunoreactivity (AvT-IR) was confined to distinct regions, particularly in the preoptic/hypothalamic region and pituitary gland. Double labelling studies of NP-JR and AvT-IR showed the peptides are not colocalised in the same neural pathways. The distribution of natriuretic peptide binding sites using the ligands 125I-rat ANP (125I-rANP) and 125I-porcine CNP (125I-pCNP) showed different distributions in the brain of B. marinus. The specificity of binding was determined by displacement with unlabelled rat ANP, porcine CNP and C-ANF, an NPR-C specific ligand. 125I-rANP binding sites were broadly distributed throughout the brain with the highest concentration in pituitary gland, habenular, medial pallium and olfactory region. Minimal 125I-rANP binding was observed in the preoptic region. Residual 125I-rANP binding in the presence of C-ANF was observed in the olfactory region, habenular and pituitary gland indicating the presence of both NPR-GC and NPR-C in these regions. 125I-pCNP binding was limited to the olfactory region, pallium and posterior pituitary gland. All 125I-pCNP binding was displaced by C-ANF which suggests that CNP in the brain of B. marinus binds only to NPR-C. Affinity cross-linking and SDS-PAGB demonstrated two binding sites at 136 kDa and 65 kDa under reducing conditions. Guanylate cyclase assays showed 0.1 µM ANP increased cGMP levels 50% above basal whilst a 10-fold higher concentration of CNP was required to produce the same result. Molecular cloning studies revealed a 669 base pair fragment showing 91% homology with human and rat NPR-A and 89% homology with human, rat and eel NPR-B. A 432 base pair fragment showing 67% homology to the mammalian NPR-C and 58% homology with eel NPR-D was also obtained. The results show natriuretic peptides and their receptors are distributed throughout the brain of B. marinus which indicates that natriuretic peptides may participate in a range of regulatory functions throughout the brain. The potential for natriuretic peptides to regulate the release of the fluid and electrolyte regulating hormone AVT also exists due to the high number of natriuretic peptide binding sites in the posterior pituitary gland. At least two populations of natriuretic peptide receptors are present in the brain of B. marinus, one linked to guanylate cyclase and one resembling the mammalian clearance receptor. Furthermore, autoradiography and guanylate cyclase studies suggest ANP may be the major ligand in the brain of B. marinus, even though CNP is the only natriuretic peptide that has been isolated from the lower vertebrate brain to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In some mating systems males should benefit from mating with virgin females because of their higher reproductive value. We determined experimentally whether and how males distinguish between virgin and recently mated females in the guppy, Poecilia reticulata, a promiscuous livebearer. In a free-swimming experiment, males showed flexible mating behaviour by adjusting their tactics according to the mating status of the female they encountered, virgin or mated. Males followed, nipped and copulated with virgins more than with mated females, but they performed more sneaky copulations with mated females, possibly because the latter were more reluctant to mate than virgin females. When, in another set of experiments, males received only the visual cues of both virgins and mated females they showed no preference for either, but when they were exposed only to the female olfactory cues, they associated considerably more with the smell of virgin females. These results suggest that male guppies assess female behavioural and olfactory cues to determine female virginity and then use different mating tactics depending on the female's status. It is possible that the changes in male mating behaviour increase male reproductive success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant empirical evidence has demonstrated the importance of discriminative mate choice as a mechanism to avoid inbreeding. Incestuous mating can be avoided by recognition of kin. The guppy, Poecilia reticulata, is a livebearer with a polygamous mating system and active female choice. Despite potential inbreeding costs in the guppy, Viken et al. (Ethology 112:716–723, 2006) and Pitcher et al. (Genetica 134:137–146, 2008) have found that females do not discriminate between sibs and unrelated males. However, populations experiencing different inbreeding histories can have different levels of inbreeding avoidance, and it is possible that the lack of inbreeding avoidance observed in guppies is a consequence of using outbred fish only. Here we tested the preference of female guppies with different inbreeding coefficients, for olfactory cues of males that were either unrelated but had the same inbreeding coefficient, or were related (i.e. brother) with the same inbreeding coefficient. We found no evidence that female guppies preferred unrelated males with the same inbreeding coefficient. Moreover, inbreeding level did not influence female preference for unrelated males, suggesting that inbreeding history in a population has no influence on female discrimination of unrelated males in guppies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Locating potential mates is critical to mating. We studied males’ association with females and mate-searching patterns in the guppy, Poecilia reticulata, a promiscuous live-bearer. In the field, we examined whether male guppies respond differently to a shoal of conspecific fish based on the members of the shoal. We found that more males were attracted to shoals that contained receptive females than to shoals of nonreceptive females or males. We also conducted laboratory experiments to investigate how males use olfactory cues of nonreceptive and receptive females to search for and associate with females. We gave males the option to associate with nonreceptive females when olfactory cues of receptive or nonreceptive females were present and absent, and when olfactory cues were presented alone. Males associated with females most strongly when both cues were presented simultaneously, but when cues were presented separately males’ association with females differed with respect to the olfactory cues that were added. Males associated with females equally with visual and olfactory cues presented separately when the odour cues were from receptive females. However, when the odour cues were from nonreceptive females, males associated with females less with olfactory than visual cues. Searching activity increased when males had access only to olfactory cues. Taken together these results suggest that olfactory cues influence males’ association with females and searching behaviour, and these changes in behaviour are likely to maximize a male’s opportunity to encounter receptive females.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical predictions suggest that species-specific signals used in the attraction of mates should evolve to reduce the risk of mismating and hybridization. These predictions lead to the hypothesis that the signals of spatially overlapping (i.e. sympatric or syntopic) species should differ more substantially than those of non-overlapping species. Earlier studies have tested this prediction for auditory and visual signals. Here we test the hypothesis using olfactory signals, specifically the aggregation pheromones of species from two genera of bark beetles, Dendroctonus and Ips. We found no direct evidence from within these genera regarding the fact that the chemical blends that make up these pheromones differ more substantially in species that overlap in their geographical ranges and/or host-tree use than in allopatric taxa. However, when comparing between genera, the pheromones of overlapping species appear to be more similar than non-overlapping species. We hypothesize that the species of host tree utilized by the beetles may have some influence on their pheromone blends. Additionally, within genera, species that overlap in host use tend to be more closely related than species that use different hosts. These results may provide indirect evidence for an effect of species overlap on the evolution of bark beetle pheromones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deeper burial of bulbs and tubers has been suggested as an escape against below-ground herbivory by vertebrates, but experimental evidence is lacking. As deep propagule burial can incur high costs of emergence after dormancy, burial depth may represent a trade-off between sprouting survival and herbivore avoidance. We tested whether burial depth of subterraneous tubers is a flexible trait in fennel pondweed (Potamogeton pectinatus), facing tuber predation by Bewick's swans (Cygnus columbianus bewickii) in shallow lakes in winter. In a four-year experiment involving eight exclosures, winter herbivory by swans and all vertebrate summer herbivory were excluded in a full-factorial design; we hence controlled for aboveground vertebrate herbivory in summer, possibly influencing tuber depth. Tuber depth was measured each September before swan arrival and each March before tuber sprouting. In accordance with our hypothesis, tuber depth in September decreased after excluding Bewick's swans in comparison to control plots. The summer exclosure showed an increase in tuber biomass and the number of shallow tubers, but not a significant effect on the mean burial depth of tuber mass. Our results suggest that a clonal plant like P. pectinatus can tune the tuber burial depth to predation pressure, either by phenotypic plasticity or genotype sorting, hence exhibiting flexible avoidance by escape. We suggest that a flexible propagule burial depth can be an effective herbivore avoidance strategy, which might be more widespread among tuber forming plant species than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olfaction is an ancient sensory capability, and yet while it is now widely recognized that birds have olfactory mechanisms, use of the sense within a social context has been largely overlooked. In our study, we aimed to determine, for the first time, whether plumage odour may contribute to avian subspecies discrimination. We used a species complex, the crimson rosella, Platycercus elegans, which exhibits large geographical and phenotypic differences. Across 2 years in a wild population of P.elegans elegans we tested whether females at the nest could: (1) discriminate odours of conspecifics; (2) discriminate odours of subspecies; (3) discriminate odours of sexes of conspecifics; and (4) habituate at different rates to odour treatments. We found that female response differed between odours of feathers of consubspecifics, heterosubspecifics, heterospecific controls and sham controls and between odours of sexes of conspecifics. Across all odour treatments, we found habituation to the odour and the rate of habituation differed between odour treatments. Our results indicate that P.e. elegans females are able to discriminate conspecifics, consubspecifics and sexes based on plumage odour. To our knowledge, this is the first work to show that birds of a certain subspecies can discriminate the odour of its own subspecies from that of other subspecies. Our findings suggest that olfaction in birds may play a larger role than hitherto considered, and may even act as a signal to maintain or promote population divergence. © 2014 The Association for the Study of Animal Behaviour.