116 resultados para null mice

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the frequency-force relationship in regenerating muscles of C57BL/10 and mdx mice after injury, indicating reduced force at each stimulation frequency, but enhanced the frequency-force relationship in muscles from dko mice. We conclude that while Notch inhibition produces slight functional defects in dystrophic muscle, Notch activation does not significantly improve muscle regeneration in murine models of muscular dystrophy. Furthermore, the inconsistent expression of Notch targets between murine models and DMD patients suggests caution when making interspecies comparisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chondroitin sulfate proteoglycans (CSPGs) aggrecan, versican, and brevican are large aggregating extracellular matrix molecules that inhibit axonal growth of the mature central nervous system (CNS). ADAMTS proteoglycanases, including ADAMTS4 and ADAMTS5, degrade CSPGs, representing potential targets for ameliorating axonal growth-inhibition by CSPG accumulation after CNS injury. We investigated the proteolysis of CSPGs in mice homozygous for Adamts4 or Adamts5 null alleles after spinal cord injury (SCI). ADAMTS-derived 50-60 kDa aggrecan and 50 kDa brevican fragments were observed in Adamts4-/-, Adamts5-/-, and wt mice but not in the sham-operated group. By contrast Adamts4-/- and Adamts5-/- mice were both protected from versican proteolysis with an ADAMTS-generated 70 kDa versican fragment predominately observed in WT mice. ADAMTS1, ADAMTS9, and ADAMTS15 were detected by Western blot in Adamts4-/- mice' spinal cords after SCI. Immunohistochemistry showed astrocyte accumulation at the injury site. These data indicate that aggrecan and brevican proteolysis is compensated in Adamts4-/- or Adamts5-/- mice by ADAMTS proteoglycanase family members but a threshold of versican proteolysis is sensitive to the loss of a single ADAMTS proteoglycanase during SCI. We show robust ADAMTS activity after SCI and exemplify the requirement for collective proteolysis for effective CSPG clearance during SCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of riluzole (Ril), creatine (Cr) and a combination of these treatments on the onset and progression of clinical signs and neuropathology in an animal model of familial amyotrophic lateral sclerosis, the G93A transgenic mouse (n=13–17 per group). The onset of clinical signs was delayed (P<0.05) by about 12 days in all treatment groups compared with control; however, no differences occurred between treatments. All animals were killed at 199 days of age. At the end of the experimental period the severity of clinical signs was less (P<0.05) with all treatments compared with control. Again no differences between treatments were observed. The treatments had no effect on the number of neurons in ventral horns of the lumbar region of the spinal cord. Transgenic mice ingesting Cr displayed elevated (P<0.05) total Cr levels in cerebral hemispheres (5%) and spinal cord (8%), but not skeletal muscles. These data demonstrate that treatment with Ril and Cr were both effective in delaying disease onset and clinical disability. To the age of killing, no additional benefit was conferred by co-administration of Ril and Cr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The final steps in the absorption and excretion of copper at the molecular level are accomplished by 2 closely related proteins that catalyze the ATP-dependent transport of copper across the plasma membrane. These proteins, ATP7A and ATP7B, are encoded by the genes affected in human genetic copper-transport disorders, namely, Menkes and Wilson diseases. We studied the effect of copper perfusion of an isolated segment of the jejunum of ATP7A transgenic mice on the intracellular distribution of ATP7A by immunofluorescence of frozen sections. Our results indicate that ATP7A is retained in the trans-Golgi network under copper-limiting conditions, but relocalized to a vesicular compartment adjacent to the basolateral membrane in intestines perfused with copper. The findings support the hypothesis that the basolateral transport of copper from the enterocyte into the portal blood may involve ATP7A pumping copper into a vesicular compartment followed by exocytosis to release the copper, rather than direct pumping of copper across the basolateral membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The period immediately after exercise is characterized by enhanced insulin action in skeletal muscle, and on the molecular level, by a marked increase in insulin-stimulated, phosphotyrosine-associated phosphatidylinositol (PI) 3-kinase activity. Because the increase in PI 3-kinase activity cannot be explained by increased insulin receptor substrate (IRS)-1 signaling, the present study examined whether this effect is mediated by enhanced IRS-2 signaling. In wild-type (WT) mice, insulin increased IRS-2 tyrosine phosphorylation (2.5-fold) and IRS-2-associated PI 3-kinase activity (3-fold). Treadmill exercise, per se, had no effect on IRS-2 signaling, but in the period immediately after exercise, there was a further increase in insulin-stimulated IRS-2 tyrosine phosphorylation (3.5-fold) and IRS-2-associated PI 3-kinase activity (5-fold). In IRS-2-deficient (IRS-2-/-) mice, the increase in insulin-stimulated, phosphotyrosine-associated PI 3-kinase activity was attenuated as compared with WT mice. However, in IRS-2-/- mice, the insulin-stimulated, phosphotyrosine-associated PI 3-kinase response after exercise was slightly higher than the insulin-stimulated response alone. In conclusion, IRS-2 tyrosine phosphorylation and associated PI 3-kinase activity are markedly enhanced by insulin in the immediate period after exercise. IRS-2 signaling can partially account for the increase in insulin-stimulated phosphotyrosine-associated PI 3-kinase activity after exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity involved in regulating the degradation of receptor tyrosine kinases. We have recently reported that c-Cbl–/– mice exhibit a lean phenotype and enhanced peripheral insulin action likely due to elevated energy expenditure. In the study reported here, we examined the effect of a high-fat diet on energy homeostasis and glucose metabolism in these animals. When c-Cbl–/– mice were fed a high-fat diet for 4 weeks, they maintained hyperphagia, higher whole-body oxygen consumption (27%), and greater activity (threefold) compared with wild-type animals fed the same diet. In addition, the activity of several enzymes involved in mitochondrial fat oxidation and the phosphorylation of acetyl CoA carboxylase was significantly increased in muscle of high-fat–fed c-Cbl–deficient mice, indicating a greater capacity for fat oxidation in these animals. As a result of these differences, fat-fed c-Cbl–/– mice were 30% leaner than wild-type animals and were protected against high-fat diet–induced insulin resistance. These studies are consistent with a role for c-Cbl in regulating nutrient partitioning in skeletal muscle and emphasize the potential of c-Cbl as a therapeutic target in the treatment of obesity and type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is an E3 ubiquitin ligase that has an important role in regulating the degradation of cell surface receptors. In the present study we have examined the role of c-Cbl in whole-body energy homeostasis. c-Cb-/- mice exhibited a profound increase in whole-body energy expenditure as determined by increased core temperature and whole-body oxygen consumption. As a consequence, these mice displayed a decrease in adiposity, primarily due to a reduction in cell size despite an increase in food intake. These changes were accompanied by a significant
increase in activity (2- to 3-fold). In addition, cc-Cb-/- mice displayed a marked improvement in whole-body insulin action, primarily due to changes in muscle metabolism. We observed increased protein levels of the insulin receptor (4-fold) and uncoupling protein-3 (2-fold) in skeletal muscle and a significant increase in the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. These fmdings suggest that c-Cbl plays an integral role in whole-body fuel homeostasis by regulating whole-body energy expenditure and insulin action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14-/- mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilson's disease carriers constitute 1% of the human population. It is unknown whether Wilsons disease carriers are at increased susceptibility to copper overload when exposed to chronically high levels of ingested copper. This study investigated the effect of chronic excess copper in drinking water on the heterozygous form of the Wilson’s disease mouse model – the toxic milk (tx) mouse. Mice were provided with drinking water containing 300 mg/l copper for 4–7, 8–11, 12–15 or 16–20 months. At the completion of the study liver, spleen, kidney and brain tissue were analyzed by atomic absorption spectroscopy to determine copper concentration. Plasma ceruloplasmin oxidase activity and liver histology were also assessed. Chronic copper loading resulted in significantly increased liver copper in both tx heterozygous and tx homozygous mice, while wild type mice were resistant to the effects of copper loading. Copper loading effects were greatest in tx homozygous mice, with increased extrahepatic copper deposition in spleen and kidney – an effect absent in heterozygote and wild type mice. Although liver histology in homozygous mice was markedly abnormal, no histological differences were noted between heterozygous and wild type mice with copper loading. Tx heterozygous mice have a reduced ability to excrete excess copper, indicating that half of the normal liver Atp7b copper transporter activity is insufficient to deal with large copper intakes. Our results suggest that Wilsons disease carriers in the human population may be at increased risk of copper loading if chronically exposed to elevated copper in food or drinking water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of neutrophil production. Studies in cell lines have established that conserved tyrosines Y704, Y729, Y744, Y764 within the cytoplasmic domain of G-CSF receptor (G-CSF-R) contribute significantly to G-CSF-induced proliferation, differentiation and cell survival. However, it is unclear whether these tyrosines are equally important under more physiological conditions. Here, we investigated how individual G-CSF-R tyrosines affect G-CSF responses of primary myeloid progenitors. We generated GCSF- R deficient mice and transduced their bone marrow cells with tyrosine "null" mutant (mO), single tyrosine "add back" mutants or wild type (WT) receptors. G-CSFinduced responses were determined in primary colony assays, serial replatings and suspension cultures. We show that removal of all tyrosines had no major influence on primary colony growth. However, adding back Y764 strongly enhanced proliferativeresponses, which was reverted by inhibition of ERK activitity. Y729, which we found to be associated with the suppressor of cytokine signaling, SOCS3, had a negative effect on colony formation. After repetitive replatings, the clonogenic capacities of cells expressing mO gradually dropped compared to WT. The presence of Y729, but also Y704 and Y744, both involved in activation of STAT3, further reduced replating
efficiencies. Conversely, Y764 greatly elevated the clonogenic abilities of myeloid progenitors, resulting in a >104–fold increase of colony forming cells over mO after the fifth replating. These findings suggest that tyrosines in the cytoplasmic domain of G-CSF-R, although dispensable for G-CSF-induced colony growth, recruit signaling mechanisms that regulate the maintenance and outgrowth of myeloid progenitor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catecholamines are viewed as major stimulants of diet- and cold-induced thermogenesis and of fasting-induced lipolysis, through the β-adrenoceptors (β1/β2/β3). To test this hypothesis, we generated β1/β2/β3-adrenoceptor triple knockout (TKO) mice and compared them to wild type animals. TKO mice exhibited normophagic obesity and cold-intolerance. Their brown fat had impaired morphology and lacked responses to cold of uncoupling protein-1 expression. In contrast, TKO mice had higher circulating levels of free fatty acids and glycerol at basal and fasted states, suggesting enhanced lipolysis. Hence, β-adrenergic signalling is essential for the resistance to obesity and cold, but not for the lipolytic response to fasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ganopoly is an aqueous polysaccharide fraction extracted from G. lucidum by patented biochemical technique and has been marketed as an over-the-counter product for chronic diseases including cancer and hepatopathy in many Asian countries. This study was undertaken to explore the anti-tumour effect and the underlying mechanisms of Ganopoly in mice and human tumor cell lines. The maximum tolerateddose (MTD) of Ganopoly in mice was estimated to be 100 mg/kg from a pilot study. Treatment of mice with oral Ganopoly for 10 days significantly reduced the tumour weight of sarcoma-180 in a dose-dependent manner, with inhibition rates of 32.3, 48.2 and 84.9% and growth delays of 1.5, 3.5, and 13.1 days at 20, 50, and 100 mg/kg, respectively. Incubation of Ganopoly at 0.05-1.0 mg/ml for 48 hours showed little or negligible cytotoxicity against human tumor CaSki, SiHa, Hep3B, HepG2, HCT116, HT29, and MCF7 cells in vitro. In contrast, 10 mg/ml of Ganopoly caused significant cytotoxicity in all tumour cells tested except MCF7, with marked apoptotic effects observed in CaSki, HepG2, and HCT116 cells, as indicated by nuclear staining and DNA fragmentation. In addition, Ganopoly enhanced concanavalin A-stimulated proliferation of murine splenocytes by 35.3% at 10 mg/ml, and stimulated the production of nitric oxide in thioglycollate-primed murine peritoneal macrophages in a concentration-dependent manner over 0.05-10 mg/ml. Addition of Ganopoly at 1 mg/ml to murine peritoneal macrophages also potentiated lipopolysaccharide-induced nitric oxide production by 64.2%. Treatment of healthy mice or mice bearing sarsoma-180 with oral Ganopoly over 20-100 mg/kg for 7 day significantly increased the expression of both TNF-α and IFN-γ (at both mRNA and protein levels) in splenocytes in a dose-dependent manner. Moreover, treatment of Ganopoly over 20-100 mg/kg significantly increased cytotoxic T lymphocyte cytotoxicity and NK activity in mice. The overall findings indicated that Ganopoly had antitumor activity with a broad spectrum of immuno-modulating activities and may represent a novel promising immunotherapeutic agent in cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both copper transporting ATPases, ATP7A and ATP7B, are expressed in mammary epithelial cells but their role in copper delivery to milk has not been clarified. We investigated the role of ATP7A in delivery of copper to milk using transgenic mice that over-express human ATP7A. In mammary gland of transgenic mice, human ATP7A protein was 10- to 20-fold higher than in control mice, and was localized to the basolateral membrane of mammary epithelial cells in lactating mice. The copper concentration in the mammary gland of transgenic dams and stomach contents of transgenic pups was significantly reduced compared to non-transgenic mice. The mRNA levels of endogenous Atp7a, Atp7b, and Ctr1 copper transporters in the mammary gland were not altered by the expression of the ATP7A transgene, and the protein levels of Atp7b and ceruloplasmin were similar in transgenic and non-transgenic mice. These data suggest that ATP7A plays a role in removing excess copper from the mammary epithelial cells rather than supplying copper to milk.