9 resultados para nuclear spectroscopy

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis and complete characterisation of the fluorescent ligand, 4-acridinol-1-sulphonic acid (the acridine analogue of 8-quinolinol-5-sulfonic acid) is described. Using a judicious array of nuclear magnetic resonance spectroscopy experiments, the structural elucidation and full assignment of all proton and carbon chemical shifts were afforded. The 4-acridinol-1-sulphonic acid was found to behave in a similar manner to 8-quinolinol-5-sulphonic acid, forming fluorescent complexes with magnesium(II) and zinc(II). The uncorrected emission maxima for the metal–acridinol complexes were found to be at around 620 nm compared to 505 nm for the respective quinolinol complexes. Unfortunately, preliminary spectrofluorimetric analytical figures of merit revealed that the detection limits of the new acridinol metal complexes were one and a half orders of magnitude poorer than those attained with the corresponding quinolinol ligand. However, in contrast to 8-quinolinol-5-sulphonic acid, the 4-acridinol-1-sulphonic acid ligand showed considerable selectivity for magnesium(II) and zinc(II) over aluminium(III).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple model peroxyoxalate chemiluminescence system was monitored directly across a range of temperatures (from −80 to +20 °C) using 13C nuclear magnetic resonance spectroscopy. These experiments were made possible by the utilisation of 13C doubly labelled oxalyl chloride, which was reacted with anhydrous hydrogen peroxide in dry tetrahydrofuran. Ab initio quantum calculations were also performed to estimate the 13C nuclear magnetic resonance (NMR) shift of the most commonly postulated key intermediate 1,2-dioxetanedione and this data, in concert with the spectroscopic evidence, confirmed its presence during the reaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proton nuclear magnetic resonance spectroscopy (NMR) has shown the potential for being a valuable tool in monitoring a commercial fermentation. In this preliminary study, a suite of organic analytes including ethanol, fructose, glucose, methanol, glycerol, malic acid, tartaric acid, succinic acid, acetic acid and lactic acid were simultaneously determined during the fermentation. Data collection and analysis using chemometric algorithms aided the understanding of key processes including the effects of seeding a wine with bacteria for malo-lactic fermentation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY 13C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. 13C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

13C nuclear magnetic resonance (n.m.r.) has been used to study polypyrrole and N-substituted polypyrrole in the solid state. The extent of oxidation appears to be counterion-dependent; in particular, the quinoid structure appears favoured in the films prepared with dodecyl sulfate. Resonances associated with the quinoid unit are lost upon reduction of the polypyrrole film, which supports the idea that the quinoid structure is associated with the oxidized form of polypyrrole. N-substituted polypyrroles have a more distinct resonance at 110 ppm, which is linked to lower degrees of oxidation or charge delocalization in these systems. The decrease in conductivity of polypyrrole upon thermal ageing in air is associated with both the loss of counterion (‘thermal dedoping’) and the decomposition of the quinoid structure in the polymer backbone. There is no indication of carbonyl formation in the solid-state n.m.r. spectra obtained in the present study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamic nuclear polarisation (DNP) has been used to obtain magic angle spinning (14)N(OT) (nitrogen-14 overtone) solid-state NMR spectra from several model amino acids, with both direct and indirect observation of the (14)N(OT) signal. The crystalline solids were impregnated with biradical solutions of organic liquids that do not dissolve the crystalline phase. The bulk phase was then polarized via(1)H spin diffusion from the highly-polarized surface (1)H nuclei, resulting in (1)H DNP signal enhancements of around two orders of magnitude. Cross polarisation from (1)H nuclei directly to the (14)N overtone transition is demonstrated under magic angle spinning, using a standard pulse sequence with a relatively short contact time (on the order of 100 μs). This method can be used to acquire (14)N overtone MAS powder patterns that match closely with simulated line shapes, allowing isotropic chemical shifts and quadrupolar parameters to be measured. DNP enhancement also allows the rapid acquisition of 2D (14)N(OT) heteronuclear correlation spectra from natural abundance powder samples. (1)H-(14)N(OT) HETCOR and (13)C-(14)N(OT) HMQC pulse sequences were used to observe all single-bond H-N and C-N correlations in histidine hydrochloride monohydrate, with the spectra obtained in a matter of hours. Due to the high natural abundance of the (14)N isotope (99.6%) and the advantages of observing the overtone transition, these methods provide an attractive route to the observation of C-N correlations from samples at natural isotopic abundance and enable the high resolution measurement of (14)N chemical shifts and quadrupolar interaction parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A poly(2-acrylamido-2-methyl-1-propane-sulphonate) (PAMPS) ionomer containing both sodium and quaternary ammonium cations functionalised with an ether group, has been characterised in terms of its thermal properties, ionic conductivity and sodium ion dynamics. The ether oxygen was incorporated to reduce the Na+ association with the anionic sulfonate groups tethered to the polymer backbone, thereby promoting ion dissociation and ultimately enhancing the ionic conductivity. This functionalised ammonium cation led to a significant reduction in the ionomer Tg compared to an analogue system without an ether group, resulting in an increase in ionic conductivity of approximately four orders of magnitude. The sodium ion dynamics were probed by 23Na solid-state NMR, which allowed the signals from the dissociated (mobile) and bound Na+ cations to be distinguished. This demonstrates the utility of 23Na solid-state NMR as a probe of sodium dynamics in ionomer systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvent-free polymer electrolytes based on poly(vinyl alcohol) (PVA) and LiCF3SO3 have shown relatively high conductivities (10−8-10−4 S cm−1), with Arrhenius temperature dependence below the differential scanning calorimeter (DSC) glass transition temperature (343 K). This behaviour is in stark contrast to traditional polymer electrolytes in which the conductivity reflects VTF behaviour. 7Li nuclear magnetic resonance (NMR) spectroscopy has been employed to develop a better understanding of the conduction mechanism. Variable temperature NMR has indicated that, unlike traditional polymer electrolytes where the linewidth reaches a rigid lattice limit near Tg, the lithium linewidths show an exponential decrease with increasing temperature between 260 and 360 K. The rigid lattice limit appears to be below 260 K. Consequently, the mechanism for ion conduction appears to be decoupled from the main segmental motions of the PVA. Possible mechanisms include ion hopping, proton conduction or ionic motion assisted by secondary polymer relaxations.