2 resultados para nitrogen source

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many animals, notably herbivores, plants are often an inadequate food source given the low content of protein and high content of C-rich material. This conception is mainly based on studies on ectotherms. The validity of this conception for endotherms is unclear given their much higher carbon requirements for maintenance energy metabolism than ectotherms. Applying stoichiometric principles, we hypothesized that endotherms can cope with diets with much higher (metabolizable) carbon to nitrogen ratios than ectotherms. Using empirical data on birds, eutherian mammals, marsupials and reptiles, we compiled and compared measurements and allometric equations for energy metabolism as well as nitrogen requirements. Our analysis supports our hypothesis that plants, and especially their leaves, are generally sufficiently rich in nitrogen to fulfil protein demands in endotherms, at least during maintenance conditions, but less so in ectotherms. This has important implications with respect to community functioning and the evolution of endothermy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reductions in the extent of seagrass Zostera nigricaulis coverage in Port Phillip Bay (PPB), Australia, between 2000 and 2011 coincided with a prolonged period of drought (1997 to 2009) characterized by decreases in freshwater and nutrient inputs. This led us to hypothesize that patterns of seagrass expansion and decline in PPB may be linked to nutrient availability. Seagrasses in PPB can make use of a range of different nitrogen (N) sources depending on their relative availability. Accordingly, there is a need to identify the origin of the N utilised by seagrasses in order to understand how changes in the availability of nutrients from various sources may influence seagrass growth. This study used stable isotope analysis to estimate the contribution of different sources of N to seagrass growth in different parts of PPB. Source modelling indicated that regional patterns of N source utilisation matched changes in seagrass extent from 2000 to 2011. Regions in which seagrass declined contained a similar array of sources, including significant contributions from the catchment area, whereas regions where seagrass areas remained unchanged were largely dependent on a single N source (either fixation/recycled or sewage-derived). We propose that reductions in N from the catchment during the drought may have contributed to the decline of seagrasses in regions where N from the catchment is an important source. This finding is likely to have implications for the growth, distribution and resilience of Z. nigricaulis seagrass in PPB as well as in other parts of its range in southern Australia.