3 resultados para nanotechnologies

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases are the leading cause of death and morbidity in industrialized nations and are becoming an urgent health problem for all nations due to the unstoppable trend of an ageing and obese population. Due to the rapid development of micro total analysis systems (μTAS) and nanotechnology in recent years, they will play an important role in the diagnosis, management, and therapy of cardiovascular diseases. It is envisaged that the micro and nanotechnologies developed for treating other diseases shall be explored for cardiovascular applications to reduce the research effort required for commercializing the devices and drugs to meet the increasing demand of the cardiovascular patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need for new and effective/efficient antibacterial therapeutics and diagnostics is necessary if we want to be able to maintain and improve the protection against pathogenic bacteria. Bacteria are becoming increasingly resistant to traditionally used antibiotics and as a result are a major health concern. The number of deaths and hospitalizations due to bacteria is increasing. Current methods of bacterial diagnostics are inefficient as they lack speed and ultra sensitivity and cannot be performed on site. This is where nanomedicine is playing a vital role. The discovery of new and innovative materials through the improvement in fabrication techniques has seen the establishment of an influx of novel antibacterial therapeutics and diagnostics. The goal of this review is to highlight the research that has been done through the implementation of nanomaterials and nanotechnologies for antibacterial medical therapeutic and diagnostic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aptamers represent the novel class of oligonucleotides holding multiple applications in the area of biomedicine. The advancements introduced with the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach further eased the scope of producing modified aptamers within a short span yet retaining the properties of stability and applicability. In the recent times, aptamers were identified to have the potential for penetrating into the deep human crevices and thus can be utilized in addressing the issues of complex neurological disorders. Considering the specificity and stability enhancement by chemical modifications, aptamer-based nanotechnologies may have great potential for future therapeutics and diagnostics (theranostics). The research community has already witnessed success with the approval of macugen (an anti-vascular endothelial growth factor aptamer) for treating degenerating eye disease, and hopefully those that are in the clinical trials will soon be translated for human application. Herein, we have summarized the aptamer chemistry, aptamer-nanoconjugates and their applications against neurological diseases.