8 resultados para n (2 aminophenyl) 4 (3 pyridinylmethoxycarbonylaminomethyl)benzamide

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new stable aluminum aminoterephthalate system contains octameric building blocks that are connected by organic linkers to form a 12-connected net (see picture). The structure adopts a cubic centered packing motive in which octameric units replace individual atoms, thus forming distorted octahedral (red sphere) and tetrahedral cages (green spheres) with effective accessible diameters of 1 and 0.45 nm, respectively

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heating a dioxa-bridged diene with a cyclobutane epoxide for 10 min under microwave conditions (150 °C) gave an unexpected aryloxanorbornane product (20%). This adduct is proposed to occur via a [3+2] dipolar cycloaddition, retro-Diels-Alder reaction, ring-opening and subsequent aromatisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound, C14H12O4, crystallizes as discrete mol­ecular species which form hydr­oxy-to-ketone hydrogen-bonded dimers disposed about crystallographic centres of symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercise increases skeletal muscle insulin action but the underlying mechanisms mediating this are equivocal. In mouse skeletal muscle, prior exercise enhances insulin-stimulated insulin receptor substrate-2 (IRS-2) signaling (Diabetes 2002;51:479-83), but it is unknown if this also occurs in humans. Hyperinsulinemic-euglycemic clamps were performed on 7 untrained males at rest and immediately after 60 minutes of cycling exercise at ~75% Vo2peak. Muscle biopsies were obtained at basal, immediately after exercise, and at 30 and 120 minutes of hyperinsulinemia. Insulin infusion increased (P < .05) insulin receptor tyrosine phosphorylation similarly in both the rest and exercise trials. Under resting conditions, insulin infusion resulted in a small, but non&ndash;statistically significant increase in IRS-2&ndash;associated phosphatidylinositol 3 (PI 3)&ndash;kinase activity over basal levels. Exercise per se decreased (P < .05) IRS-2&ndash;associated PI 3&ndash;kinase activity. After exercise, insulin-stimulated IRS-2&ndash;associated PI 3&ndash;kinase activity tended to increase at 30 minutes and further increased (P < .05) at 120 minutes when compared with the resting trial. Insulin increased (P < .05) Akt Ser473 and GSK-3α/β Ser21/Ser9 phosphorylation in both trials, with the response tending to be higher in the exercise trial. In conclusion, in the immediate period after an acute bout of exercise, insulin-stimulated IRS-2 signaling is enhanced in human skeletal muscle.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(triazine imide) with intercalation of lithium and chloride ions (PTI/Li+Cl&minus;) was synthesized by temperature-induced condensation of dicyandiamide in a eutectic mixture of lithium chloride and potassium chloride as solvent. By using this ionothermal approach the well-known problem of insufficient crystallinity of carbon nitride (CN) condensation products could be overcome. The structural characterization of PTI/Li+Cl&minus; resulted from a complementary approach using spectroscopic methods as well as different diffraction techniques. Due to the high crystallinity of PTI/Li+Cl&minus; a structure solution from both powder X-ray and electron diffraction patterns using direct methods was possible; this yielded a triazine-based structure model, in contrast to the proposed fully condensed heptazine-based structure that has been reported recently. Further information from solid-state NMR and FTIR spectroscopy as well as high-resolution TEM investigations was used for Rietveld refinement with a goodness-of-fit (χ2) of 5.035 and wRp=0.05937. PTI/Li+Cl&minus; (P63cm (no. 185); a=846.82(10), c=675.02(9) pm) is a 2D network composed of essentially planar layers made up from imide-bridged triazine units. Voids in these layers are stacked upon each other forming channels running parallel to [001], filled with Li+ and Cl&minus; ions. The presence of salt ions in the nanocrystallites as well as the existence of sp2-hybridized carbon and nitrogen atoms typical of graphitic structures was confirmed by electron energy-loss spectroscopy (EELS) measurements. Solid-state NMR spectroscopy investigations using 15N-labeled PTI/Li+Cl&minus; proved the absence of heptazine building blocks and NH2 groups and corroborated the highly condensed, triazine-based structure model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

S-Benzylisothiouronium halides are used as shelf-stable, odorless thiol equivalents. The method developed is used to access 2-(benzylthio)-4-(trifluoromethyl)thiazole carboxyl building blocks. Using the latent trifluoromethyl substituent the reactions could be monitored using 19F NMR spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the preparation of synthetic conotoxins containing multiple disulfide bonds, oxidative folding can produce numerous permutations of disulfide bond connectivities. Establishing the native disulfide connectivities thus presents a significant challenge when the venom-derived peptide is not available, as is increasingly the case when conotoxins are identified from cDNA sequences. Here, we investigate the disulfide connectivity of μ-conotoxin KIIIA, which was predicted originally to have a [C1&ndash;C9,C2&ndash;C15,C4&ndash;C16] disulfide pattern based on homology with closely related μ-conotoxins. The two major isomers of synthetic μ-KIIIA formed during oxidative folding were purified and their disulfide connectivities mapped by direct mass spectrometric collision-induced dissociation fragmentation of the disulfide-bonded polypeptides. Our results show that the major oxidative folding product adopts a [C1&ndash;C15,C2&ndash;C9,C4&ndash;C16] disulfide connectivity, while the minor product adopts a [C1&ndash;C16,C2&ndash;C9,C4&ndash;C15] connectivity. Both of these peptides were potent blockers of NaV1.2 (Kd values of 5 and 230 nM, respectively). The solution structure for μ-KIIIA based on nuclear magnetic resonance data was recalculated with the [C1&ndash;C15,C2&ndash;C9,C4&ndash;C16] disulfide pattern; its structure was very similar to the μ-KIIIA structure calculated with the incorrect [C1&ndash;C9,C2&ndash;C15,C4&ndash;C16] disulfide pattern, with an α-helix spanning residues 7&ndash;12. In addition, the major folding isomers of μ-KIIIB, an N-terminally extended isoform of μ-KIIIA identified from its cDNA sequence, were isolated. These folding products had the same disulfide connectivities as μ-KIIIA, and both blocked NaV1.2 (Kd values of 470 and 26 nM, respectively). Our results establish that the preferred disulfide pattern of synthetic μ-KIIIA and μ-KIIIB folded in vitro is 1&ndash;5/2&ndash;4/3&ndash;6 but that other disulfide isomers are also potent sodium channel blockers. These findings raise questions about the disulfide pattern(s) of μ-KIIIA in the venom of Conus kinoshitai; indeed, the presence of multiple disulfide isomers in the venom could provide a means of further expanding the snail’s repertoire of active peptides.