46 resultados para multidrug resistance associated protein 1

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topotecan (TPT) is a semisynthetic water-soluble derivative of camptothecin (CPT) used as second-line therapy in patients with metastatic ovarian carcinoma, small cell lung cancer, and other malignancies. However, both doselimiting toxicity and tumor resistance hinder the clinical use of TPT. The mechanisms for resistance to TPT are not fully defined, but increased efflux of the drug by multiple drug transporters including P-glycoprotein (PgP), multidrug resistance associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) from tumor cells has been highly implicated. This study aimed to investigate whether overexpression of human MRP4 rendered resistance to TPT by examining the cytotoxicity profiles using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay and cellular accumulation of TPT in HepG2 cells stably overexpressing MRP4. Two kinds of cell lines, HepG2 with insertion of an empty vector plasmid (V/HepG2), HepG2 cells stably expressing MRP4 (MRP4/HepG2), were exposed to TPT for 4 or 48 hr in the absence or presence of various MRP4 inhibitors including DL-buthionine-(S,R)-sulphoximine (BSO), diclofenac, celecoxib, or MK-571. The intracellular accumulation of TPT and paclitaxel (a PgP substrate) by V/HepG2 and MRP4/HepG2 cells was determined by incubation of TPT with the cells and the amounts of the drug in cells were determined by validated HPLC methods. The study demonstrated that MRP4 conferred a 12.03- and 6.86-fold resistance to TPT in the 4- and 48-hr drug-exposure MTT assay, respectively. BSO, MK-571, celecoxib, or diclofenac sensitised MRP4/HepG2 cells to TPT cytotoxicity and partially reversed MRP4-mediated resistance to TPT. In addition, the accumulation of TPT was significantly reduced in MRP4/HepG2 cells compared to V/HepG2 cells, and one-binding site model was found the best fit for the MRP4-mediated efflux of TPT, with an estimated Km of 1.66 mM and Vmax of 0.341 ng/min/106 cells. Preincubation of MRP4/HepG2 cells with BSO (200 μM) for 24 hr, celecoxib (50 mM), or MK-571 (100 mM) for 2 hr significantly increased the accumulation of TPT over 10 min in MRP4/HepG2 cells by 28.0%, 37.3% and 32.5% (P < 0.05), respectively. By contrast, there was no significant difference in intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells over 120 min. MRP4 also rendered resistance to adefovir dipivoxil (bis-POMPMEA) and methotrexate, two reported MRP4 substrates. MRP4 did not exhibit any significant resistance to other model drugs including vinblastine, vincristine, etoposide, carboplatin, cyclosporine and paclitaxel in both long (48 hr) and short (4 hr) drug-exposure MTT assays. These findings indicate that MRP4 confers resistance to TPT and TPT is the substrate for MRP4. Further studies are needed to explore the role of MRP4 in resistance to, toxicity and pharmacokinetics of TPT in cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose The multidrug resistance associated protein (MRP) 4 is a member of the adenosine triphosphate (ATP)-binding cassette transporter family. Camptothecins (CPTs) have shown substantial anticancer activity against a broad spectrum of tumors by inhibiting DNA topoisomerase I, but tumor resistance is one of the major reasons for therapeutic failure. P-glycoprotein, breast cancer resistance protein, MRP1, and MRP2 have been implicated in resistance to various CPTs including CPT-11 (irinotecan), SN-38 (the active metabolite of CPT-11), and topotecan. In this study, we explored the resistance profiles and intracellular accumulation of a panel of CPTs including CPT, CPT-11, SN-38, rubitecan, and 10-hydroxy-CPT (10-OH-CPT) in HepG2 cells with stably overexpressed human MRP4. Other anticancer agents such as paclitaxel, cyclophosphamide, and carboplatin were also included.
Methods HepG2 cells were transfected with an empty vehicle plasmid (V/HepG2) or human MRP4 (MRP4/HepG2). The resistance profiles of test drugs in exponentially growing V/HepG2 and MRP4/HepG2 cells were examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay with 4 or 48 h exposure time of the test drug in the absence or presence of various MRP4 inhibitors. The accumulation of CPT-11, SN-38, and paclitaxel by V/HepG2 and MRP4/HepG2 cells was determined by validated high-performance liquid chromatography methods.
Results Based on the resistance folds from the MTT assay with 48 h exposure time of the test drug, MRP4 conferred resistance to CPTs tested in the order 10-OH-CPT (14.21) > SN-38 carboxylate (9.70) > rubitecan (9.06) > SN-38 lactone (8.91) > CPT lactone (7.33) > CPT-11 lactone (5.64) > CPT carboxylate (4.30) > CPT-11 carboxylate (2.68). Overall, overexpression of MRP4 increased the IC50 values 1.78- to 14.21-fold for various CPTs in lactone or carboxylate form. The resistance of MRP4 to various CPTs tested was significantly reversed in the presence of dl-buthionine-(S,R)-sulfoximine (BSO, a γ-glutamylcysteine synthetase inhibitor), MK571, celecoxib, or diclofenac (all MRP4 inhibitors). In addition, the accumulation of CPT-11 and SN-38 over 120 min in MRP4/HepG2 cells was significantly reduced compared to V/HepG2 cells, whereas the addition of celecoxib, MK571, or BSO significantly increased their accumulation in MRP4/HepG2 cells. There was no significant difference in the intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells, indicating that P-glycoprotein was not involved in the observed resistance to CPTs in this study. MRP4 also conferred resistance to cyclophosphamide and this was partially reversed by BSO. However, MRP4 did not increase resistance to paclitaxel, carboplatin, etoposide (VP-16), 5-fluorouracil, and cyclosporine.
Conclusions Human MRP4 rendered significant resistance to cyclophosphamide, CPT, CPT-11, SN-38, rubitecan, and 10-OH-CPT. CPT-11 and SN-38 are substrates for MRP4. Further studies are needed to explore the role of MRP4 in resistance, toxicity, and pharmacokinetics of CPTs and cyclophosphamide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human contains 49 ATP-binding cassette (ABC) transporter genes and the multidrug resistance associated proteins (MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, MRP4/ABCC4, MRP5/ABCC5, MRP6/ABCC6, MRP7/ABCC10, MRP8/ABCC11 and MRP9/ABCC12) belong to the ABCC family which contains 13 members. ABCC7 is cystic fibrosis transmembrane conductance regulator; ABCC8 and ABCC9 are the sulfonylurea receptors which constitute the ATP-sensing subunits of a complex potassium channel. MRP10/ABCC13 is clearly a pseudo-gene which encodes a truncated protein that is highly expressed in fetal human liver with the highest similarity to MRP2/ABCC2 but without transporting activity. These transporters are localized to the apical and/or basolateral membrane of the hepatocytes, enterocytes, renal proximal tubule cells and endothelial cells of the blood-brain barrier. MRP/ABCC members transport a structurally diverse array of important endogenous substances and xenobiotics and their metabolites (in particular conjugates) with different substrate specificity and transport kinetics. The human MRP/ABCC transporters except MRP9/ABCC12 are all able to transport organic anions, such as drugs conjugated to glutathione, sulphate or glucuronate. In addition, selected MRP/ABCC members may transport a variety of endogenous compounds, such as leukotriene C(4) (LTC(4) by MRP1/ABCC1), bilirubin glucuronides (MRP2/ABCC2, and MRP3/ABCC3), prostaglandins E1 and E2 (MRP4/ABCC4), cGMP (MRP4/ABCC4, MRP5/ABCC5, and MRP8/ABCC11), and several glucuronosyl-, or sulfatidyl steroids. In vitro, the MRP/ABCC transporters can collectively confer resistance to natural product anticancer drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and in concert with alterations in phase II conjugating or biosynthetic enzymes, classical alkylating agents, alkylating agents. Several MRP/ABCC members (MRPs 1-3) are associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. Drug targeting of these transporters to overcome MRP/ABCC-mediated multidrug resistance may play a role in cancer chemotherapy. Most MRP/ABCC transporters are subject to inhibition by a variety of compounds. Based on currently available preclinical and limited clinical data, it can be expected that modulation of MRP members may represent a useful approach in the management of anticancer and antimicrobial drug resistance and possibly of inflammatory diseases and other diseases. A better understanding of their substrates and inhibitors has important implications in development of drugs for treatment of cancer and inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Multidrug Resistance Associated Proteins (MRPI, MRP2, MRP3, MRp4, MRp5, MRP6, MRP7, MRPS and MRP9) belong to the ATP-binding cassette superfamily (ABCC family) of transporters expressed differentially in the liver, kidney, intestine and blood-brain barrier. MRps transport a structurally diverse array of endo- and xenobiotics and their metabolites (in particular conjugates) and are subject to induction and inhibition by a variety of compounds. An increased efflux of natural product anticancer drugs and other anticancer agents by MRPs in cancer cells is associated with tumor resistance. These transporting proteins play a role in the absorption, distribution and elimination of various compounds in the body. There are increased reports on the clinical impact of genetic mutations of genes encoding MRP1-9. Therefore, MRPs have an important role in drug development, since a better understanding of their function and regulating mechanism can help minimize and avoid drug toxicity, unfavorable drug-drug interactions, and to overcome drug resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing use of herbal medicines worldwide, and the extracts from the root of Salvia miltiorrhiza are widely used in the treatment of angina and stroke. In this study, we investigated the mechanism for the intestinal absorption of tanshinone IIB (TSB), a major constituent of S. miltiorrhiza. The oral bioavailability of TSB was about 3% in rats with less proportional increase in its maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) with increasing dosage. The time to Cmax (Tmax) was prolonged at higher oral dosage. In a single pass rat intestinal perfusion model, the permeability coefficients (Papp) based on TSB disappearance from the lumen (Plumen) were 6.2- to 7.2-fold higher (p < 0.01) than those based on drug appearance in mesenteric venous blood (Pblood). The uptake and efflux of TSB in Caco-2 cells were also significantly altered in the presence of an inhibitor for P-glycoprotein (PgP) or for multi-drug resistance associated protein (MRP1/2). TSB transport from the apical (AP) to basolateral (BL) side in Caco-2 monolayers was 3.3- to 5.7-fold lower than that from BL to AP side, but this polarized transport was attenuated by co-incubation of PgP or MRP1/2 inhibitors. The Papp values of TSB in the BL-AP direction were significantly higher in MDCKII cells over-expressing MDR1 or MRP1, but not in cells over-expressing MRP2-5, as compared with the wild-type cells. The plasma AUC0-24hr in mdr1a and mrp1 gene-deficient mice was 10.2- to 1.7-fold higher than that in the wild-type mice. Furthermore, TSB significantly inhibited the uptake of digoxin and vinblastine in membrane vesicles containing PgP or MRP1. TSB also moderately stimulated PgP ATPase activity. Taken collectively, our findings indicate that TSB is a substrate for PgP and MRP1 and that drug resistance to TSB therapy and drug interactions may occur through PgP and MRP1 modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptotanshinone (CTS), a major constituent from the roots of Salvia miltiorrhiza (Danshen), is widely used in the treatment of coronary heart disease, stroke and less commonly Alzheimer's disease. Our recent study indicates that CTS is a substrate for Pglycoprotein (PgP/MDR1/ABCB1). This study has investigated the nature of the brain distribution of CTS across the brain-blood barrier (BBB) using several in vitro and in vivo rodent models. A polarized transport of CTS was found in rat primary microvascular endothelial cell (RBMVEC) monolayers, with facilitated efflux from the abluminal side to luminal side. Addition of a PgP (e.g. verapamil and quinidine) or multi-drug resistance protein 1/2 (MRP1/2) inhibitor (e.g. probenecid and MK-571) in both luminal and abluminal sides attenuated the polarized transport. In a bilateral in situ brain perfusion model, the uptake of CTS into the cerebrum increased from 0.52 ± 0.1% at 1 min to 11.13 ± 2.36 ml/100 g tissue at 30 min and was significantly greater than that of sucrose. Co-perfusion of a PgP/MDR1 (e.g. verapamil) or MRP1/2 inhibitor (e.g. probenecid) significantly increased the brain distribution of CTS by 35.1-163.6%. The brain levels of CTS were only about 21% of those in plasma, and were significantly increased when coadministered with verapamil or probenecid in rats. The brain levels of CTS in rats subjected to middle cerebral artery occlusion and rats treated with quinolinic acid (a neurotoxin) were about 2- to 2.5-fold higher than the control rats. Moreover, the brain levels in mdr1a(-/-) and mrp1(-/-) mice were 10.9- and 1.5-fold higher than those in the wild-type mice, respectively. Taken collectively, these findings indicate that PgP and Mrp1 limit the brain penetration of CTS in rodents, suggesting a possible role of PgP and MRP1 in limiting the brain penetration of CTS in patients and causing drug resistance to Danshen therapy and interactions with conventional drugs that are substrates of PgP and MRP1. Further studies are needed to explore the role of other drug transporters in restricting the brain penetration of CTS and the clinical relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dose-limiting diarrhea and myelosuppression compromise the success of irinotecan (7-ethyl-10-[4-[1-piperidino]-1-piperidino] carbonyloxycamptothecin) (CPT-11)-based chemotherapy. A recent pilot study indicates that thalidomide attenuates the toxicity of CPT-11 in cancer patients. This study aimed to investigate whether coadministered thalidomide modulated the toxicities of CPT-11 and the underlying mechanisms using several in vivo and in vitro models. Diarrhea, intestinal lesions, cytokine expression, and intestinal epithelial apoptosis were
monitored. Coadministered thalidomide (100 mg/kg i.p. for 8 days) significantly attenuated body weight loss, myelosuppression, diarrhea, and intestinal histological lesions caused by CPT-11 (60 mg/kg i.v. for 4 days). This was accompanied by inhibition of tumor necrosis factor-, interleukins 1 and 6 and interferon-, and intestinal epithelial apoptosis. Coadministered
thalidomide also significantly increased the systemic exposure of CPT-11 but decreased that of SN-38 (7-ethyl-10-hydroxycampothecin). It significantly reduced the biliary excretion and cecal exposure of CPT-11, SN-38, and SN-38 glucuronide. Thalidomide hydrolytic products inhibited hydrolysis of CPT-11 in rat liver microsomes but not in primary rat hepatocytes. In addition, thalidomide and its major hydrolytic products, such as phthaloyl glutamic acid (PGA), increased the intracellular accumulation of CPT-11 and SN-38 in primary rat hepatocytes. They also significantly decreased the transport of CPT-11 and SN-38 in Caco-2 and parental MDCKII cells. Thalidomide and PGA also significantly inhibited P-glycoprotein (PgP/MDR1), multidrug resistance-associated protein (MRP1)- and MRP2-mediated CPT-11 and SN-38 transport in MDCKII cells. These results provide insights into the pharmacodynamic and  pharmacokinetic mechanisms for the protective effects of thalidomide against CPT-11-induced intestinal toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1) and multidrug resistance protein 1 (MRP1/ABCC1) play an important role in the extrusion of drugs from the cell and their overexpression can be a cause of failure of anticancer and antimicrobial chemotherapy. Recently, the mouse P-gp/Abcb1a structure has been determined and this has significantly enhanced our understanding of the structure-activity relationship (SAR) of mammalian ABC transporters. This paper highlights our current knowledge on the structural and functional properties and the SAR of human MRP1/ABCC1. Although the crystal structure of MRP1/ABCC1 has yet to be resolved, the current topological model of MRP1/ABCC1 contains two transmembrane domains (TMD1 and TMD2) each followed by a nucleotide binding domain (NBD) plus a third NH2-terminal TMD0. MRP1/ABCC1 is expressed in the liver, kidney, intestine, brain and other tissues. MRP1/ABCC1 transports a structurally diverse array of important endogenous substances (e.g. leukotrienes and estrogen conjugates) and xenobiotics and their metabolites, including various conjugates, anticancer drugs, heavy metals, organic anions and lipids. Cells that highly express MRP1/ABCC1 confer resistance to a variety of natural product anticancer drugs such as vinca alkaloids (e.g. vincristine), anthracyclines (e.g. etoposide) and epipodophyllotoxins (e.g. doxorubicin and mitoxantrone). MRP1/ABCC1 is associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. However, most compounds that efficiently reverse P-gp/ABCB1-mediated multidrug resistance have only low affinity for MRP1/ABCC1 and there are only a few effective and relatively specific MRP1/ABCC1 inhibitors available. A number of site-directed mutagenesis studies, biophysical and photolabeling studies, SAR and QSAR, molecular docking and homology modeling studies have documented the role of multiple residues in determining the substrate specificity and inhibitor selectivity of MRP1/ABCC1. Most of these residues are located in the TMs of TMD1 and TMD2, in particular TMs 4, 6, 7, 8, 10, 11, 14, 16, and 17, or in close proximity to the membrane/cytosol interface of MRP1/ABCC1. The exact transporting mechanism of MRP1/ABCC1 is unclear. MRP1/ABCC1 and other multidrug transporters are front-line mediators of drug resistance in cancers and represent important therapeutic targets in future chemotherapy. The crystal structure of human MRP1/ABCC1 is expected to be resolved in the near future and this will provide an insight into the SAR of MRP1/ABCC1 and allow for rational design of anticancer drugs and potent and selective MRP1/ABCC1 inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental context Soils contaminated with metals can pose both environmental and human health risks. This study showed that a common crop vegetable grown in the presence of cadmium and zinc readily accumulated these metals, and thus could be a source of toxicity when eaten. The work highlights potential health risks from consuming crops grown on contaminated soils. Abstract Ingestion of plants grown in heavy metal contaminated soils can cause toxicity because of metal accumulation. We compared Cd and Zn levels in Brassica rapa, a widely grown crop vegetable, with that of the hyperaccumulator Solanum nigrum L. Solanum nigrum contained 4 times more Zn and 12 times more Cd than B. rapa, relative to dry mass. In S. nigrum Cd and Zn preferentially accumulated in the roots whereas in B. rapa Cd and Zn were concentrated more in the shoots than in the roots. The different distribution of Cd and Zn in B. rapa and S. nigrum suggests the presence of distinct metal uptake mechanisms. We correlated plant metal content with the expression of a conserved putative natural resistance-associated macrophage protein (NRAMP) metal transporter in both plants. Treatment of both plants with either Cd or Zn increased expression of the NRAMP, with expression levels being higher in the roots than in the shoots. These findings provide insights into the molecular mechanisms of heavy metal processing by S. nigrum L. and the crop vegetable B. rapa that could assist in application of these plants for phytoremediation. These investigations also highlight potential health risks associated with the consumption of crops grown on contaminated soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We and others have shown that the copper transporters ATP7A and ATP7B play a role in cellular resistance to cisdiaminedichloroplatinum (II) (CDDP).  In this study, we found that ATP7A transfection of Chinese hamster ovary  cells (CHOK1) and fibroblasts isolated from Menkes disease patients  enhanced resistance not only to CDDP but also to various anticancer drugs, such as vincristine, paclitaxel, 7-ethyl-10- hydroxy-camptothecin (SN-38),  etoposide, doxorubicin, mitoxantron, and 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin (CPT-11). ATP7A preferentially localized
doxorubicin fluorescence to the Golgi apparatus in contrast to the more intense nuclear staining of doxorubicin in the parental cells. Brefeldin A   partially and monensin completely altered the distribution of doxorubicin to the nuclei in the ATP7A-expressing cells. ATP7A expression also enhanced the efflux rates of doxorubicin and SN-38 from cells and increased the uptake of SN-38 in membrane vesicles. These findings strongly suggested that   ATP7A confers multidrug resistance to the cells by compartmentalizing drugs in the Golgi apparatus and by enhancing efflux of these drugs, and the trans-Golgi network has an important role of ATP7A-related drug resistance. ATP7A was expressed in 8 of 34 (23.5%) clinical colon cancer specimens but not in the adjacent normal epithelium. Using the histoculture drug response assay that is useful for the prediction of drug sensitivity of clinical cancers, ATP7A-expressing colon cancer cells were significantly more  resistant to SN-38 than ATP7Anegative cells. Thus, ATP7A confers  resistance to various anticancer agents on cancer cells and might be a good index of drug resistance in clinical colon cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. METHODS: Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. RESULTS: HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. CONCLUSION: Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, β-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and ε. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.