8 resultados para mtDNA ND4-tRNALeu gene

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tor tambroides and T. douronensis, locally referred to as empurau and semah, respectively, are high valued mahseer species, indigenous to Sarawak, East Malaysia, with an aquaculture potential and of conservational value. Direct sequencing of mitochondrial DNA (mtDNA) 16S rRNA gene region (542 bp) was used to investigate genetic variation of T. tambroides and T. douronensis broodstock collected from different geographic locations in Sarawak and maintained at the Indigenous Fish Research and Production Center (IFRPC), Tarat, Sarawak, Malaysia. A total of 11 unique haplotypes were identified, of which six were detected in T. tambroides, and five in T. douronensis. Overall, nucleotide diversity (π) was low, ranging from 0.000 to 0.006, and haplotype diversity (h) ranged from 0.000 to 0.599. Although the analysis failed to detect genetic variation amongst populations of T. tambroides (significant pairwise FST was found for only one test, but pairwise haplotype frequencies were not statistically significant), substantial inter-population divergence among T. douronensis was recognised, especially those originating from different river systems (pairwise FST = 0.754 to 1.000, P < 0.05). Fixed haplotype differences were found in one population of T. douronensis. Average nucleotide divergence between T. tambroides and T. douronensis was 0.018, similar to the amount recognised between T. tambroides and the outgroup T. khudree (0.017). In addition, phylogenetic analysis revealed that the T. douronensis mtDNA consisted of two highly divergent clusters (0.020), one of which is more closely related to T. tambroides rather than with the other group of haplotypes of the conspecifics. The findings from the present study have important implications for aquaculture, management and conservation of these two species. The data also raise some concerns regarding the taxonomic status of T. douronensis, which needs to be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-coding copies of fragments of the mitochondrial genome translocated to the nucleus or pseudogenes are being found with increasing frequency in a diversity of organisms. As part of a study to evaluate the utility of a range of mitochondrial gene regions for population genetic and systematic studies of the Australian freshwater crayfish, Cherax destructor (the yabby), we report the first detection of Cytochrome b (Cyt b) pseudogenes in crustaceans. We amplified and sequenced fragments of the mitochondrial Cyt b gene from 14 individuals of C. destructor using polymerase chain reaction (PCR) with primers designed from conserved regions of Penaeus monodon and Drosophila melanogaster mitochondrial genomes. The phylogenetic tree produced from the amplified fragments using these primers showed a very different topology to the trees obtained from sequences from three other mitochondrial genes, suggesting one or more nuclear pseudogenes have been amplified. Supporting this conclusion, two highly divergent sequences were isolated from each of two single individuals, and a 2 base pair (bp) deletion in one sequence was observed. There was no evidence to support inadvertent amplification of parasite DNA or contamination of samples from other sources. These results add to other recent observations of pseudogenes suggesting the frequent transfer of mitochondrial DNA (mtDNA) genes to the nucleus and reinforces the necessity of great care in interpreting PCR-generated Cyt b sequences used in population or evolutionary studies in freshwater crayfish and crustaceans more generally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete mitochondrial DNA sequence was determined for the Australian freshwater crayfish Cherax destructor (Crustacea: Decapoda: Parastacidae). The 15,895-bp genome is circular with the same gene composition as that found in other metazoans. However, we report a novel gene arrangement with respect to the putative arthropod ancestral gene order and all other arthropod mitochondrial genomes sequenced to date. It is apparent that 11 genes have been translocated (ND1, ND4, ND4L, Cyt b, srRNA, and tRNAs Ser(UGA), Leu(CUN), Ile, Cys, Pro, and Val), two of which have also undergone inversions (tRNAs Pro and Val). The ‘duplication/random loss’ mechanism is a plausible model for the observed translocations, while ‘intramitochondrial recombination’ may account for the gene inversions. In addition, the arrangement of rRNA genes is incompatible with current mitochondrial transcription models, and suggests that a different transcription mechanism may operate in C. destructor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete mitochondrial DNA of the blacklip abalone Haliotis rubra (Gastropoda: Mollusca) was cloned and 16,907 base pairs were sequenced. The sequence represents an estimated 99.85% of the mitochondrial genome, and contains 2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes found in other metazoan mtDNA. An AT tandem repeat and a possible C-rich domain within the putative control region could not be fully sequenced. The H. rubra mtDNA gene order is novel for mollusks, separated from the black chiton Katharina tunicata by the individual translocations of 3 tRNAs. Compared with other mtDNA regions, sequences from the ATP8, NAD2, NAD4L, NAD6, and 12S rRNA genes, as well as the control region, are the most variable among representatives from Mollusca, Arthropoda, and Rhynchonelliformea, with similar mtDNA arrangements to H. rubra. These sequences are being evaluated as genetic markers within commercially important Haliotis species, and some applications and considerations for their use are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current knowledge of the evolutionary relationships among scallop species (Mollusca: Bivalvia: Pectinidae) in the Indo-Pacific region is rather scanty. To enhance the understanding of the relationships within this group, phylogenies of nine species of scallops with the majority from coastal regions of Thailand, were reconstructed by maximum parsimony, maximum likelihood, and Bayesian methods using sequences of the 16S rRNA of the mitochondrial genome, and a fragment containing the ITS1, 5.8S and ITS2 genes of the nuclear DNA. The trees that resulted from the three methods of analysis were topologically identical, however, gained different levels of support at some nodes. Nine species were clustered into two major clades, corresponding to two subfamilies (Pectininae and Chlamydinae) of the three currently recognized subfamilies within Pectinidae. Overall, the relationships reported herein are mostly in accordance with the previous molecular studies that used sequences of the mtDNA cytochrome oxidase subunit I, and the classification system based on microsculpture of shell features and morphological characteristics of juveniles. Levels of divergences were different among genes (i.e., the 5.8S gene showed the lowest levels of nucleotide divergence at all levels, whereas the 16S rRNA showed the highest level of variation within species, and ITS2 gene revealed the highest level of divergence at higher levels).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using both mitochondrial and nuclear multiloci markers, we explored population genetic structure, gene flow and sex-specific dispersal of frillneck lizards (Chlamydosaurus kingii) sampled at three locations, separated by 10 to 50 km, in a homogenous savannah woodland in tropical Australia. Apart from a recombinant lizard, the mitochondrial analyses revealed two nonoverlapping haplotypes/populations, while the nuclear markers showed that the frillneck lizards represented three separate clusters/populations. Due to the small population size of the mtDNA, fixation may occur via founder effects and/or drift. We therefore suggest that either of these two processes, or a combination of the two, are the most likely causes of the discordant results obtained from the mitochondrial and the nuclear markers. In contrast to the nonoverlapping mitochondrial haplotypes, in 12 out of 74 lizards, mixed nuclear genotypes were observed, hence revealing a limited nuclear gene flow. Although gene flow should ultimately result in a blending of the populations, we propose that the distinct nuclear population structure is maintained by frequent fires resulting in local bottlenecks, and concomitant spatial separation of the frillneck lizard populations. Limited mark-recapture data and the difference in distribution of the mitochondrial and nuclear markers suggest that the mixed nuclear genotypes were caused by juvenile male-biased dispersal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Across eastern Australia, mountain ranges (the Great Dividing Range) and river catchments (the Murray-Darling Basin) are likely to have shaped the phylogeographical structure of many species. We address how such processes have influenced the phylogeography of the lace monitor, Varanus varius, a large mobile lizard. Location: Eastern and south-eastern Australia. Methods: Phylogeographical hypotheses were tested using up to 90 museum and field-collected samples from across the entire species' range; a 671-bp region of the mtDNA gene ND4 was sequenced and all individuals were genotyped (eight microsatellite loci). Results: Maximum-likelihood analysis of sequence data revealed three geographically separate clades, with divergences estimated to have occurred during the Pleistocene. The south-eastern clade showed an expansion pattern from northern refugia and dispersal appears to have occurred along the Murray-Darling river system. Microsatellite analyses support mtDNA clades but indicate secondary contact in the Hunter Valley, New South Wales. Main conclusions: Our results indicate that phylogeographical structure and contemporary gene flow in Varanus varius is shaped by dispersal capacity, geographical barriers and the presence of ancient river corridors. Indeed, only the most significant geological (McPherson Range) and habitat barriers (Burdekin Gap) appear to limit gene flow in this species. The expansion of the clade on the western side of the Great Dividing Range suggests that ancient riparian corridors have facilitated extensive gene flow. Our study highlights the importance of understanding a species' ecological dynamics when examining broad-scale evolutionary patterns.