38 resultados para molybdenum carbonyl

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous Ti-Mo alloy samples with different porosities from 52% to 72% were successfully fabricated by the space-holder sintering method. The pore size of the porous Ti-Mo alloy samples were ranged from 200 to 500 μm. The plateau stress and elastic modulus of the porous Ti-Mo alloy samples increases with the decreasing of the porosity. Moreover, an apatite coating on the Ti-Mo alloy after an alkali and heat treatment was obtained through soaking into a simulated body fluid (SBF). The porous Ti-Mo alloy provides promising potential for new implant materials with new bone tissue ingrowth ability, bioactivity and mechanical properties mimicking those of natural bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-pressure behaviors of MOO3·1/2H2O and MOO3·2H2O have been investigated by Raman spectroscopy in a diamond anvil cell up to 31.3 and 30.3 GPa, respectively. In the pressure range up to around 30 GPa, both MOO3·1/2H2O and MOO3·2H2O undergo two reversible structural phase transitions. We observed a subtle structural transition due to O−H···O hydrogen bond in MOO3·1/2H2O at 3.3 GPa. We found a soft mode phase transition in MOO3·2H2O at 6.6 GPa. At higher pressures, a frequency discontinuity shift and appearance of new peaks occurred in both MOO3·1/2H2O and MOO3·2H2O, indicating that the second phase transition is a first-order transition. The frequency redshift of the O−H stretching bands of MOO3·1/2H2O and MOO3·2H2O are believed to be related to the enhancement of the O−H···O weak hydrogen bonds under high pressures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing interest in two-dimensional van der Waals materials, molybdenum disulfide (MoS2) has emerged as a promising material for electronic and energy storage devices. It suffers from poor cycling stability and low rate capability when used as an anode in lithium ion batteries. Here, N-doped MoS2 nanosheets with 2-8 atomic layers, increased interlayer distance, mesoporous structure and high surface area synthesised by a simple sol-gel method show an enhanced lithium storage performance, delivering a high reversible capacity (998.0 mA h g-1, 50 mA g-1), high rate performance (610 mA h g-1, 2 A g-1), and excellent cycling stability. The excellent lithium storage performance of the MoS2 nanosheets might be due to the better electrical and ionic conductivity and improved lithium ion diffusion which are related to their structural characteristics and high concentration N doping. The possible mechanism of the improved performance is proposed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of combined silicon and molybdenum alloying additions on microalloy precipitate formation in austenite after single- and double-step deformations below the austenite no-recrystallization temperature were examined in high-strength low-alloy (HSLA) steels microalloyed with titanium and niobium. The precipitation sequence in austenite was evaluated following an interrupted thermomechanical processing simulation using transmission electron microscopy. Large (~ 105 nm), cuboidal titanium-rich nitride precipitates showed no evolution in size during reheating and simulated thermomechanical processing. The average size and size distribution of these precipitates were also not affected by the combined silicon and molybdenum additions or by deformation. Relatively fine (< 20 nm), irregular-shaped niobium-rich carbonitride precipitates formed in austenite during isothermal holding at 1173 K. Based upon analysis that incorporated precipitate growth and coarsening models, the combined silicon and molybdenum additions were considered to increase the diffusivity of niobium in austenite by over 30% and result in coarser precipitates at 1173 K compared to the lower alloyed steel. Deformation decreased the size of the niobium-rich carbonitride precipitates that formed in austenite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemically splitting water for hydrogen evolution reaction (HER) has been viewed as a promising approach to produce renewable and clean hydrogen energy. However, searching for cheap and efficient HER electrocatalysts to replace the currently used Pt-based catalysts remains an urgent task. Herein, we develop a one-step carbon nanotube (CNT) assisted synthesis strategy with CNTs' strong adsorbability to mediate the growth of subnanometer-sized MoS(x) on CNTs. The subnanometer MoS(x)-CNT hybrids achieve a low overpotential of 106 mV at 10 mA cm(-2), a small Tafel slope of 37 mV per decade, and an unprecedentedly high turnover frequency value of 18.84 s(-1) at η = 200 mV among all reported non-Pt catalysts in acidic conditions. The superior performance of the hybrid catalysts benefits from the presence of a higher number of active sites and the abundant exposure of unsaturated S atoms rooted in the subnanometer structure, demonstrating a new class of subnanometer-scale catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Change of tensile properties, electrical conductivity and microwave shielding of electrochemically synthesized polypyrrole films with time are presented. Highly doped films had good electrical stability, retaining high microwave reflectivity throughout the aging period. Lightly doped films were less stable and partially reflective and absorptive of microwaves. FT-IR spectral observations revealed a progressive increase in intensity of an unsaturated conjugated carbonyl peak, which was not observed in the highly doped films, suggesting that the concentration of the dopant had an influence on the mechanism of degradation of conductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title molecule, C15H14N2OS, the seven-membered ring adopts a boat conformation. The carbonyl, imine and phenyl groups lie to one side of the molecule, and the thienyl ring and methylene group to the other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis, characterisation and polymerisation studies of a homologous series of α,ω-bis(pyrrolyl)alkanes are described. These α,ω-bis(pyrrolyl)alkanes were produced using Friedel–Crafts acylation followed by reduction of the carbonyl group using Red-Al®. Chemical polymerisation of the resultant dimers using FeCl3 produced poly(α,ω-bis(pyrrolyl)alkane) films, which were characterised by SEM, FTIR and tested for conductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a group of low- and ultralow-carbon microalloyed steels containing additions of boron and/or molybdenum to enhance hardenability. Each alloy was subjected to simulated recrystallization and nonrecrystallization rolling schedules, followed by controlled cooling at rates from 0.1 °C/s to about 100 °C/s, and the corresponding continuous-cooling-transformation (CCT) diagrams were constructed. The resultant microstructures ranged from polygonal ferrite (PF) for combinations of slow cooling rates and low alloying element contents, through to bainitic ferrite accompanied by martensite for fast cooling rates and high concentrations of alloying elements. Combined additions of boron and molybdenum were found to be most effective in increasing steel hardenability, while boron was significantly more effective than molybdenum as a single addition, especially at the ultralow carbon content. Severe plastic deformation of the parent austenite (>0.45) markedly enhanced PF formation in those steels in which this microstructural constituent was formed, indicating a significant effective decrease in their hardenability. In contrast, in those steels in which only nonequilibrium ferrite microstructures were formed, the decreases in hardenability were relatively small, reflecting the lack of sensitivity to strain in the austenite of those microstructural constituents forming in the absence of PF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium and some of its alloys are well accepted as load-bearing implant materials due to their excellent mechanical properties, superior corrosion resistance, and outstanding biocompatibility. However, solid implant materials may suffer from the problems of adverse tissue reaction, biomechanical mismatch and lack of new bone tissue ingrowth ability. In the present study, porous titanium-molybdenum (Ti-Mo) alloy was fabricated by the space-holding sintering method. The pore size, pore shape and porosity can be controlled through choosing appropriate space-holding particle materials. Electron scanning microscopy (SEM) was used for the characterisation of the porous Ti-Mo alloy. The mechanical properties of the porous Ti-Mo alloy samples were investigated by compressive tests. Results indicated that the porous Ti-Mo alloy provides promising potential for new implant materials with new bone tissue ingrowth ability and mechanical properties mimicking those of natural bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the current work, two different coatings, nitrocarburised (CN) and titanium carbonitride (TiCN) on M2 grade high speed tool steel, were prepared by commercial diffusion and physical vapour deposition (PVD) techniques, respectively. Properties of the coating were characterised using a variety of techniques such as Glow-Discharge Optical Emission Spectrometry (GD-OES) and Scanning Electron Microscopy (SEM). Three non-commercial, oil-based lubricants with simplified formulations were used for this study. A tribological test was developed in which two nominally geometrically-identical crossed cylinders slide over each other under selected test conditions. This test was used to evaluate the effectiveness of a pre-applied lubricant film and a surface coating for various conditions of sliding wear. Engineered surface coatings can significantly improve wear resistance of the tool surface but their sliding wear performances strongly depend on the type of coating and lubricant combination used. These coating-lubricant interactions can also have a very strong effect on the useful life of the lubricant in a tribological system. Better performance of lubricants during the sliding wear testing was achieved hen used with the nitrocarburised (CN) coating. To understand the nature of the interactions and their possible effects on the coating-lubricant system, several surface analysis techniques were used. The molecular level investigation of Fourier Transform Infrared Spectroscopy (FTIR) revealed that oxidative degradation occurred in all used oil-based lubricants during the sliding wear test but the degradation behaviour of oil-based lubricants varied with the coating-lubricant system and the wear conditions. The main differences in the carbonyl oxidation region of the FTIR spectra (1900-1600 cm-1) between different coating-lubricant systems may relate to the effective lifetime of the lubricant during the sliding wear test. Secondary Ion Mass Spectrometry (SIMS) depth profiling shows that the CN coating has the highest lubricant absorbability among the tested tool surfaces. Diffusion of chlorine (C1), hydrogen (H) and oxygen (O) into the surface of subsurface of the tool suggested that strong interactions occurred between lubricant and tool surface during the sliding wear test. The possible effects of the interactions on the performance of whole tribological system are also discussed. The study of Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) indicated that the envelope of hydrocarbons (CmHn) of oil lubricant in the positive TOF-SIMS spectra shifted to lower mass fragment after the sliding wear testing due to the breakage of long-chain hydrocarbons to short-chain ones during the degradation of lubricant. The shift of the mass fragment range of the hydrocarbon (CmHn) envelope caries with the type of both tool surface and lubricant, again confirming that variation in the performance of the tool-lubricant system relates to the changes in surface chemistry due to tribochemical interactions at the tool-lubricant interface under sliding wear conditions. The sliding wear conditions resulted in changes not only in topography of the tool surface due to mechanical interactions, as outlined in Chapter 5, but also in surface chemistry due to tribochemical interactions, as discussed in Chapters 6 and 7.