14 resultados para modified electrode

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

.A novel electrochemical sensing platform was developed based on flower-like gold–zinc oxide core–shell nanoparticles and a graphene nanocomposite-modified glassy carbon electrode. The gold–zinc oxide core–shell nanoflowers were synthesized by seed growth and characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible absorption spectroscopy. The modified electrode provided good electrocatalytic properties, rapid response, high stability, and favorable reproducibility for determination of ascorbic acid. The performance of the sensor included a linear dynamic range from 1.0 × 10−7 to 6.0 × 10−4 M, a limit of detection of 3.9 × 10−8 M, and a sensitivity of 24.12 µA/mM. The nanocomposite also provided excellent selectivity and lower potential for the oxidation of ascorbic acid. The sensor was used for the determination of ascorbic acid in tablets with satisfactory results. This device provides rapid, simple, and selective determination of ascorbic acid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peptide-modified electrode surfaces have been shown to have excellent recognition properties for metal ions. An efficient method of screening a potential peptide for its selectivity for a given metal would involve the synthesis of the peptide directly on the electrode surface. This paper outlines a procedure in which the tripeptide Gly−Gly−His was synthesized one amino acid at a time on a gold surface modified with a self-assembled monolayer of the mixed alkanethiolates 3-mercaptopropionic acid (MPA) and 3-mercaptopropane (MP). Electrochemistry and high-resolution mass spectrometry were used to elucidate the structure of the adsorbed species and follow the synthesis. The amino acids can be attached only to MPA, but the presence of a diluting unreactive molecule of MP reduces steric crowding about the reaction center. The maximum coverage of synthesized tripeptide occurs at a ratio of MPA/MP of 1:1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An electrochemical sensor for the detection of Cu2+ is reported which incorporates poly-l-aspartic acid (PLAsp) with 32–96 aspartate units as a selective ligand for the metal ion. PLAsp is covalently attached to a gold electrode modified with a monolayer of 3-mercaptopropionic acid using carbodiimide coupling via an N-hydroxysuccinimide (NHS) ester intermediate. The acid side groups and deprotonated peptide nitrogens on two aspartate moieties are thought to be primarily responsible for chelation of Cu2+, which remains bound when reduced to Cu+. A consequence of the multiple binding points that are available with a polypeptide is the low detection limit. The lowest concentration detected was 3 nM (0.2 ppb) achieved with Osteryoung square wave voltammetry. This detection limit compares favourably with that of ICP-OES and previously reported cysteine-modified electrodes. Analysis of tap and lake water samples using the PLAsp-modified electrode agreed well with ICP-OES analysis of the same samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Voltammetric behavior at gold electrodes in aqueous media is known to be strongly dependent on electrode polishing and history. In this study, an electrode array consisting of 100 nominally identical and individually addressable gold disks electrodes, each with a radius of 127 µm, has been fabricated. The ability to analyze both individual electrode and total array performance enables microscopic aspects of the overall voltammetric response arising from variable levels of inhomogeneity in each electrode to be identified. The array configuration was initially employed with the reversible and hence relatively surface insensitive [Ru(NH3)6]3+/2+ reaction and then with the more highly surface sensitive quasi-reversible [Fe(CN)6]3−/4− process. In both these cases, the reactants and products are solution soluble and, at a scan rate of 50 mV s−1, each electrode in the array is assumed to behave independently, since no evidence of overlapping of the diffusion layers was detected. As would be expected, the variability of the individual electrodesʼ responses was significantly larger than found for the summed electrode behavior. In the case of cytochrome c voltammetry at a 4,4′-dipyridyl disulfide modified electrode, a far greater dependence on electrode history and electrode heterogeneity was detected. In this case, voltammograms derived from individual electrodes in the gold array electrode exhibit shape variations ranging from peak to sigmoidal. However, again the total response was always found to be well-defined. This voltammetry is consistent with a microscopic model of heterogeneity where some parts of each chemically modified electrode surface are electroactive while other parts are less active. The findings are consistent with the common existence of electrode heterogeneity in cyclic voltammetric responses at gold electrodes, that are normally difficult to detect, but fundamentally important, as electrode nonuniformity can give rise to subtle forms of kinetic and other forms of dispersion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modification of electrodes with the tripeptide Gly–Gly–His for the detection of copper in water samples is described in detail. The tripeptide modified electrode was prepared by first self-assembling 3-mercaptopropionic acid (MPA) onto the gold electrode followed by covalent attachment of the tripeptide to the self-assembled monolayer using carbodiimide coupling. The electrodes were characterized using electrochemistry, a newly developed mass-spectrometry method and quantum mechanical calculations. The mass spectrometry confirmed the modification to proceed as expected with peptide bonds formed between the carboxylic acids of the MPA and the terminal amine of the peptide. Electrochemical measurements indicated that approximately half the MPA molecules in a SAM are modified with the peptide. The peptide modified electrodes exhibited high sensitivity to copper which is attributed to the stable 4N coordinate complex the peptide formed around the metal ion to give copper the preferred tetragonal coordination. The formation of a 4 coordinate complex was predicted using quantum mechanical calculation and confirmed using mass spectrometry. The adsorption of the copper to the peptide modified electrode was consistent with a Langmuir isotherm with a binding constant of (8.1 ± 0.4) 1010 M−1 at 25 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new enzymeless glucose sensor has been fabricated via electrospinning technology and subsequent calcination. The morphology and structure of the as-prepared nanofibers have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic oxidation of glucose in alkaline medium at nickel oxide modified glassy carbon electrodes has been investigated. The modified electrodes offer excellent electrocatalytic activity toward the glucose oxidation at low positive potential (0.3 V). Glucose has been determined chronoamperometrically at the surface of NiO nanofibers modified electrode in 0.5 mM NaOH. Under the optimized condition, the calibration curve is linear in the concentration range of 2 × 10−3 mM∼1 mM, and 1 mM∼9.5 mM. The detection limit (signal-to-noise 3) and response time are 3.394 × 10−6 M and 2 s, respectively. The NiO electrospun nanofibers is easy to prepare and feasible in economy. The modified electrode is steady and can be used repeatedly, so it is reasonable to expect its broad use in non-enzymatic glucose sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is explored that methylene blue interacts with the guanine bases specifically, rather than the bases of ss-DNA in general. This interaction can be used as a method of quantifying the amount of oligonucleotide that is immobilized onto an electrode surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical metal ion sensor has been developed with a detection limit of less than 0.2 ppt by the covalent attachment of the tripeptide Gly-Gly-His as a recognition element to a 3-mercaptopropionic acid modified gold electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical sensors for copper ions in environmental samples were prepared by modifying gold electrodes with l-cysteine by self-assembly. The adsorption of l-cysteine on gold electrodes was studied by electrochemical reductive desorption in 0.5 M KOH, and the interaction of l-cysteine with copper ions was investigated by cyclic voltammetry, chronoamperometry and X-ray photoelectron spectroscopy. At low concentrations the ratio of l-cysteine to bound Cu(II) is 2:1. At higher concentrations (0.1 M) copper reacts with adsorbed cysteine forming copper sulfide on the electrode surface. On a modified l-cysteine gold electrode, Osteryoung square wave voltammetric determination of Cu(II) with a detection limit below 5 ppb has been demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an alternative electrochemical technique to monitor covalent bond formation in real-time using nanoparticle-electrode collisions. The method is based on recognising the redox current when MP-11 functionalised chemical reduced graphene oxide (rGO) nanosheets collide with Lomant's reagent modified gold microelectrode. This facile and highly sensitive monitoring method can be useful for investigating the fundamental of single-molecule reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To meet the urgent requirement of determining trace Pb2+ and Cd2+ in seawater on site, herein we developed a simple but novel electrochemical method, named as double stripping voltammetry, using only a portable heavy metal analyzer. The proposed method consisted of three steps: First, the targeted heavy metal ions in bulk solution were concentrated onto an ionic liquid-graphite-based paste working electrode (ILGPE), which exhibits a dramatic ability of accumulation, by electrodeposition in the presence of Bi3+. Second, the three-electrode arrangement, including the ILGPE loaded with the reduced products, was transferred into 1.0mL acetate buffer solution, followed by a stripping procedure. Third, the measurement was performed with the other stripping voltammetry procedure by using a glassy carbon electrode as working electrode. Under optimum conditions, the linear range values for Pb2+ and Cd2+ in seawater were 0.2-3.2 μg/L and 0.1-3.2 μg/L, respectively. The concentrations of Pb2+ and Cd2+ in five real samples collected from coastal sites of Qingdao City were determined on site, and the results were in good agreement with that obtained with the atomic absorption spectroscopy method. In addition, the analytical performance of working electrode modified with Bi film by in situ mode was investigated in comparison with that by ex situ mode. The results showed that the in situ mode was much better than the ex situ one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, six types of typical bio-wastes are used to prepare activated carbons (ACs) by high-temperature carbonization and activation with KOH. A novel electrochemical sensor for rutin was developed based on a peanut shell-derived activated carbon and gold nanoparticle composite modified glassy carbon electrode (P-AC/AuNPs/GCE). The as-synthesized ACs and composites were characterized by a variety of physicochemical techniques. The proposed sensor exhibits ideal electrochemical behavior for rutin with a wide linear range, low detection limit, and good selectivity. The desirable electrochemical performance enables the biomass-derived ACs and their composites to act as new sources of carbonaceous materials for electrochemical sensors.