15 resultados para minimum angular velocity

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault tolerance for a class of non linear systems is addressed based on the velocity of their output variables. This paper presents a mapping to minimize the possible jump of the velocity of the output, due to the actuator failure. The failure of the actuator is assumed as actuator lock. The mapping is derived and it provides the proper input commands for the healthy actuators of the system to tolerate the effect of the faulty actuator on the output of the system. The introduced mapping works as an optimal input reconfiguration for fault recovery, which provides a minimum velocity jump suitable for static nonlinear systems. The proposed mapping is validated through different case studies and a complementary simulation. In the case studies and the simulation, the mapping provides the commands to compensate the effect of different faults within the joints of a robotic manipulator. The new commands and the compare between the velocity of the output variables for the health and faulty system are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recent successful development of the equal channel angular pressing (ECAP) process in metals provides a feasible solution to produce ultra-fine or nano-grained bulk: materials with tailored material properties. However, ECAP is difficult to scale up commercially due to excessive load requirements. In this paper, a new Multi-ECAP process with die rotation is considered to obtain ultra-fine grain structured materials under a moderate deformation force. It is shown that an addition of torsion results in a reduction in the pressing force and an increase in severity of plastic deformation. An analysis using the upper bound method is found to be useful in predicting the pressing load and flow pattern of ECAP with and without rotational dies. Solutions are obtained for different inclined channel angles under different angular velocities of dies. Relative pressures are presented and some computed solutions are compared with those found by FEM simulation. The theoretical predictions of the pressing load are in good agreement with the simulation results. The amount of plastic deformation is determined by the inclined angle between the two intersecting channels, and the velocity ratio between the angular velocity of dies and the normal component of the punch velocity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of robust finite-time trajectory tracking of nonholonomic mobile robots with unmeasurable velocities is studied. The contributions of the paper are that: first, in the case that the angular velocity of the mobile robot is unmeasurable, a composite controller including the observer-based partial state feedback control and the disturbance feed-forward compensation is designed, which guarantees that the tracking errors converge to zero in finite time. Second, if the linear velocity as well as the angular velocity of mobile robot is unmeasurable, with a stronger constraint, the finite-time trajectory tracking control of nonholonomic mobile robot is also addressed. Finally, the effectiveness of the proposed control laws is demonstrated by simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A rig was constructed to carry out compression of an aluminum cylinder with a monotonically rotating platen. The tests carried out showed that the compression load decreased and the side wall bulge severity reduced when the die was rotated. Not all the work supplied by the rotating dies was transferred to the work-piece; circumferential slippage was frequently observed at the die/material interface. This slippage was quantified by comparing measurements made during interrupted testing with the angular velocity of the die. A compound velocity field based on an exponential cusp description of the barreling was employed in an upper bound analysis. An approximate analytical solution was obtained for the degree of barreling and the compression pressure. The model is able to reproduce the decrease in barreling and compression loads with increasing die rotation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A compression test with rotating dies was employed to estimate the friction factor between aluminum samples and steel tooling during large plastic deformations. A cylindrical workpiece was compressed under dry and cold conditions. The magnitudes of torque and normal force were measured and
the average friction factor was calculated using the Coulomb friction law. It was found that under certain conditions the friction increased with increasing angular velocity of the die. This finding led to the conclusion that the choice of die rotation speed is important in interpreting the results from the twist compression test.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of experiments are reported for compression of an aluminum cylinder with monotonic and cyclic die rotation. When the die is monotonically rotated, a higher angular velocity or a lower compression speed of the tool leads to a greater load reduction in comparison of that seen with a stationary die. The test results also show that cyclic die rotation causes a cyclic fluctuation in the load-displacement curve. During the die deceleration phase, the compression load increases until it reaches the level obtained in conventional compression with stationary dies. However, the compression load is observed to reduce to levels lower than those obtained in monotonic rotating compression tests during the die acceleration phase. The frequency of rotating direction change seems to affect the position of load peaks only, not the amplitude of the peaks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Freely flying bees were filmed as they landed on a flat, horizontal surface, to investigate the underlying visuomotor control strategies. The results reveal that (1) landing bees approach the surface at a relatively shallow descent angle; (2) they tend to hold the angular velocity of the image of the surface constant as they approach it; and (3) the instantaneous speed of descent is proportional to the instantaneous forward speed. These characteristics reflect a surprisingly simple and effective strategy for achieving a smooth landing, by which the forward and descent speeds are automatically reduced as the surface is approached and are both close to zero at touchdown. No explicit knowledge of flight speed or height above the ground is necessary. A model of the control scheme is developed and its predictions are verified. It is also shown that, during landing, the bee decelerates continuously and in such a way as to keep the projected time to touchdown constant as the surface is approached. The feasibility of this landing strategy is demonstrated by implementation in a robotic gantry equipped with vision.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Point Distribution Model (PDM) has proven effective in modelling variations in shape in sets of images, including those in which motion is involved such as body and hand tracking. This paper proposes an extension to the PDM through a re-parameterisation of the model which uses factors such as the angular velocity and distance travelled for sets of points on a moving shape. This then enables non-linear quantities such as acceleration and the average velocity of the body to be expressed in a linear model by the PDM. Results are shown for objects with known acceleration and deceleration components, these being a simulated pendulum modelled using simple harmonic motion and video sequences of a real pendulum in motion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parallel mechanisms possess several advantages such as the possibilities for high acceleration and high accuracy positioning of the end effector. However, most of the proposed parallel manipulators suffer from a limited workspace. In this paper, a novel 6-DOF parallel manipulator with coaxial actuated arms is introduced. Since parallel mechanisms have more workspace limitations compared to that of serial mechanisms, determination of the workspace in parallel manipulators is of the utmost importance. For finding position, angular velocity, and acceleration, in this paper, inverse and forward kinematics of the mechanism are studied and after presenting the workspace limitations, workspace analysis of the hexarot manipulator is performed by using MATLAB software. Next, using the obtained cloud of points from simulation, the overall borders of the workspace are illustrated. Finally, it is shown that this manipulator has the important benefits of combining a large positional workspace in relation to its footprint with a sizable range of platform rotations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, surface electromyography (sEMG) from muscles of the lower limb is acquired and processed to estimate the singlejoint voluntary motion intention, based on which, two single-joint active training strategies are proposed with iLeg, a horizontal exoskeleton for lower limb rehabilitation newly developed at our laboratory. In damping active training, the joint angular velocity is proportionally controlled by the voluntary effort derived from sEMG, performing as an ideal damper, while spring active training aims to create a spring-like environment where the joint angular displacement from the constant reference is proportionally controlled by the voluntary effort. Experiments are conducted with iLeg and one healthy male subject to validate the feasibility of the two single-joint active training strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces an ambulatory energy expenditure technique using a single inertial sensor, and compares the performance with an industry standard metabolic measurement system. Wearable energy expenditure estimation systems are key instruments in athlete evaluation. The cost and size of traditional oxygen intake measurement systems (VO2 systems) limits usage of such technology in everyday athlete training and evaluation events. This project describes a method of estimating energy expenditure during treadmill exercise, from limb angular velocity and metabolic measurements. The feasibility of using such a system was evaluated using experimental results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to design and develop an optimal motion cueing algorithm (MCA) based on the genetic algorithm (GA) that can generate high-fidelity motions within the motion simulator's physical limitations. Both, angular velocity and linear acceleration are adopted as the inputs to the MCA for producing the higher order optimal washout filter. The linear quadratic regulator (LQR) method is used to constrain the human perception error between the real and simulated driving tasks. To develop the optimal MCA, the latest mathematical models of the vestibular system and simulator motion are taken into account. A reference frame with the center of rotation at the driver's head to eliminate false motion cues caused by rotation of the simulator to the translational motion of the driver's head as well as to reduce the workspace displacement is employed. To improve the developed LQR-based optimal MCA, a new strategy based on optimal control theory and the GA is devised. The objective is to reproduce a signal that can follow closely the reference signal and avoid false motion cues by adjusting the parameters from the obtained LQR-based optimal washout filter. This is achieved by taking a series of factors into account, which include the vestibular sensation error between the real and simulated cases, the main dynamic limitations, the human threshold limiter in tilt coordination, the cross correlation coefficient, and the human sensation error fluctuation. It is worth pointing out that other related investigations in the literature normally do not consider the effects of these factors. The proposed optimized MCA based on the GA is implemented using the MATLAB/Simulink software. The results show the effectiveness of the proposed GA-based method in enhancing human sensation, maximizing the reference shape tracking, and reducing the workspace usage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Static nonlinear systems are common when the model of the kinematics of mechanical or civil structures is analyzed for instance kinematics of robotic manipulators. This paper addresses the maximum effort toward fault tolerance for any number of the locked actuators failures in static nonlinear systems. It optimally reconfigures the inputs via a mapping that maximally accommodates the failures. The mapping maps the failures to an extra action of healthy actuators that results to a minimum jump for the velocity of the output variables. Then from this mapping, the minimum jump of the velocity of the output is calculated. The conditions for a zero velocity jump of the output variables are discussed. This shows that, when the conditions of fault tolerance are maintained, the proposed framework is capable of fault recovery not only at fault instances but also at the whole output trajectory. The proposed mapping is validated by three case studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To develop a new form of the modified Ashworth scale (MAS) for muscle-tone assessment that combines the MAS score with the passive muscle-stretching velocity during the assessment of muscle tone, resulting in a measure that has higher intertester reliability than the MAS.

Design: Twanty-two volunteer subjects with spinal cord injuries at a tertiary care outpatient and inpatient spinal cord injury rehabilitation center affiliated with a university were recruited for this study.

Results: A decision tree in which V-MAS scores were obtained was developed. The data obtained from three independent raters, when adjusted by means of the V-MAS, showed an excellent interrater reliability.

Conclusions: Results indicated that the V-MAS is a more reliable measure. In addition, the resulting units of the V-MAS, ranging from 0 to 1, are of the same form as pendulum test data. The V-MAS method is quite simple to use because the rater need only measure the angular range and duration of the passive movement to calculate average velocity during the MAS assessment in addition to the normal MAS rating of muscle tone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If the end-effector of a robotic manipulator moves on a specified trajectory, then for the fault tolerant operation, it is required that the end-effector continues the trajectory with a minimum velocity jump when a fault occurs within a joint. This problem is addressed in the paper. A way to tolerate the fault is to find new joint velocities for the faulty manipulator in which results into the same end-effector velocity provided by the healthy manipulator. The aim of this study is to find a strategy which optimally redistributes the joint velocities for the remained healthy joints of the manipulators. The optimality is defined by the minimum end-effector velocity jump. A solution of the problem is presented and it is applied to a robotics manipulator. Then through a case study and a simulation study it is validated. The paper shows that if would be possible the joint velocity redistribution results into a zero velocity jump.