8 resultados para microbial community

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study characterizes the extracellular polymeric substances and bacterial community composition of aerobic granules exposed to cefalexin (CLX). The presence of CLX potentially decreases granular stabilities, resulting in a lowered granule diameter. Chemical oxygen demand and NH4+-N removal efficiencies were slightly decreased and the denitrification process was inhibited with CLX addition. Extracellular polymeric substance contents were significantly increased in aerobic granules exposed to CLX. The shifts of fluorescence intensities and peak locations in 3D-EEM fluorescence spectra indicated changes of EPS components. High-throughput sequencing analysis showed aerobic granules with CLX addition in synthetic wastewater had superior diversity of microbial species, and this was the reason that the level and components of EPS changed. The species richness for bacteria was increased from 341 to 352, which was revealed by Chao1. The Shannon index of diversity rose slightly from 3.59 to 3.73 with CLX addition. The abundance of Proteobacteria significantly decreased, while the abundance of Bacteroidetes and Chloroflexi underwent a highly significant increase in aerobic granules exposed to CLX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Afforestation of agricultural land is increasing, partly because it is an important biological method for reducing the concentration of atmospheric CO2 and potentially mitigating climate change. Rainfall patterns are changing and prolonged dry periods are predicted for many regions of the world, including southern Australia. To accurately predict land-use change potential for mitigating climate change, we need to have a better understanding of how changes in land-use (i.e. afforestation of pastures) may change the soils response to prolonged dry periods. We present results of an incubation study characterising C and N dynamics and the microbial community composition in soil collected from two tree plantings and their adjacent pastures under a baseline and reduced frequency. While the concentration of soil C was similar in pasture and tree planting soils, heterotrophic respiration was significantly lower in soil from pastures than tree plantings. Although there was little difference in the composition of the soil microbial community among any of the soils or treatments, differences in N cycling could indicate a difference in microbial activity, which may explain the differences in heterotrophic respiration between pastures and tree plantings. Soils from pastures and tree plantings responded similarly to a reduction in wetting frequency, with a decrease in microbial biomass (measured as total PLFA), and a similar reduction in heterotrophic respiration from the soil. This suggests that the responses to changes in future wetting cycles may be less dependent on land-use type than expected.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mixed-species restoration tree plantings are being established increasingly, contributing to mitigate climate change and restore ecosystems. Including nitrogen (N)-fixing tree species may increase carbon (C) sequestration in mixed-species plantings, as these species may substantially increase soil C beneath them. We need to better understand the role of N-fixers in mixed-species plantings to potentially maximize soil C sequestration in these systems. Here, we present a field-based study that asked two specific questions related to the inclusion of N-fixing trees in a mixed-species planting: 1) Do non-N-fixing trees have access to N derived from fixation of atmospheric N2 by neighbouring N-fixing trees? 2) Do soil microbial communities differ under N-fixing trees and non-N-fixing trees in a mixed-species restoration planting? We sampled leaves from the crowns, and litter and soils beneath the crowns of two N-fixing and two non-N-fixing tree species that dominated the planting. Using the 15N natural abundance method, we found indications that fixed atmospheric N was utilized by the non-N-fixing trees, most likely through tight root connections or organic forms of N from the litter layer, rather than through the decomposition of N-fixers litter. While the two N-fixing tree species that were studied appeared to fix atmospheric N, they were substantially different in terms of C and N addition to the soil, as well as microbial community composition beneath them. This shows that the effect of N-fixing tree species on soil carbon sequestration is species-specific, cannot be generalized and requires planting trails to determine if there will be benefits to carbon sequestration. © 2014 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reforestation of pastures in riparian zones has the potential to decrease nutrient runoff into waterways, provide both terrestrial and aquatic habitat, and help mitigate climate change by sequestering carbon (C). Soil microbes can play an important role in the soil C cycle, but are rarely investigated in studies on C sequestration. We surveyed a chronosequence (0-23years) of mixed-species plantings in riparian zones to investigate belowground (chemical and biological) responses to reforestation. For each planting, an adjacent pasture was surveyed to account for differences in soil type and land-use history among plantings. Two remnant woodlands were included in the survey as indicators of future potential of plantings. Both remnant woodlands had significantly higher soil organic C (SOC) content compared with their adjacent pastures. However, there was no clear trend in SOC content among plantings with time since reforestation. The substantial variability in SOC sequestration among plantings was possibly driven by differences in soil moisture among plantings and the inherent variability of SOC content among reference pastures adjacent to plantings. Soil microbial phospholipid fatty acids (PLFA, an indicator of microbial biomass) and activities of decomposition enzymes (β-glucosidase and polyphenol oxidase) did not show a clear trend with increasing planting age. Despite this, there were positive correlations between total SOC concentration and microbial indicators (total PLFA, fungal PLFA, bacterial PLFA and activities of decomposition enzymes) across all sites. The soil microbial community compositions (explored using PLFA markers) of older plantings were similar to those of remnant woodlands. There was a positive correlation between the soil carbon:nitrogen (C:N) and fungal:bacterial (F:B) ratios. These data indicate that in order to maximise SOC sequestration, we need to take into account not only C inputs, but the microbial processes that regulate SOC cycling as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reforestation of agricultural lands has the potential to sequester C, while providing other environmental benefits. It is well established that reforestation can have a profound impact on soil physicochemical properties but the associated changes to soil microbial communities are poorly understood. Therefore, the objective of this study was to quantify changes in soil physicochemical properties and microbial communities in soils collected from reforested pastures and compare then to remnant vegetation and un-reforested pastures. To address this aim, we collected soil from two locations (pasture and its adjacent reforested zone, or pasture and its adjacent remnant vegetation) on each of ten separate farms that covered the range of planting ages (0-30 years and remnant vegetation) in a temperate region of southeastern Australia. Soils were analysed for a range of physicochemical properties (including C and nutrients), and microbial biomass and community composition (PLFA profiles). Soil C:N ratios increased with age of tree planting, and soil C concentration was highest in the remnant woodlands. Reforestation had no clear impact on soil microbial biomass or fungal:bacterial ratios (based on PLFA's). Reforestation was associated with significant changes in the molecular composition of the soil microbial community at many farms but similar changes were found within a pasture. These results indicate that reforestation of pastures can result in changes in soil properties within a few decades, but that soil microbial community composition can vary as much spatially within pastures as it does after reforestation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe(2+) dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many marine ecosystems have the capacity for long-term storage of organic carbon (C) in what are termed "blue carbon" systems. While blue carbon systems (saltmarsh, mangrove, and seagrass) are efficient at long-term sequestration of organic carbon (C), much of their sequestered C may originate from other (allochthonous) habitats. Macroalgae, due to their high rates of production, fragmentation, and ability to be transported, would also appear to be able to make a significant contribution as C donors to blue C habitats. In order to assess the stability of macroalgal tissues and their likely contribution to long-term pools of C, we applied thermogravimetric analysis (TGA) to 14 taxa of marine macroalgae and coastal vascular plants. We assessed the structural complexity of multiple lineages of plant and tissue types with differing cell wall structures and found that decomposition dynamics varied significantly according to differences in cell wall structure and composition among taxonomic groups and tissue function (photosynthetic vs. attachment). Vascular plant tissues generally exhibited greater stability with a greater proportion of mass loss at temperatures > 300 degrees C (peak mass loss -320 degrees C) than macroalgae (peak mass loss between 175-300 degrees C), consistent with the lignocellulose matrix of vascular plants. Greater variation in thermogravimetric signatures within and among macroalgal taxa, relative to vascular plants, was also consistent with the diversity of cell wall structure and composition among groups. Significant degradation above 600 degrees C for some macroalgae, as well as some belowground seagrass tissues, is likely due to the presence of taxon-specific compounds. The results of this study highlight the importance of the lignocellulose matrix to the stability of vascular plant sources and the potentially significant role of refractory, taxon-specific compounds (carbonates, long-chain lipids, alginates, xylans, and sulfated polysaccharides) from macroalgae and seagrasses for their long-term sedimentary C storage. This study shows that marine macroalgae do contain refractory compounds and thus may be more valuable to long-term carbon sequestration than we previously have considered.