3 resultados para micro-channels

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological fluids such as blood, proteins and DNA solutiosn moving within fluidic channels can potentially be exposed to high level of shear, extension or mixed stress, either in vitro such as industrial processing of blood products or in vivo such as ocurrs in some pathological conditions. This exposure to a high level of strain can trigger some reactions. In most of the cases the nature of the flow is mixed with shear and extensional components. The ability ot isolate the effects of each component is critical in order to understand the mechanisms behind the reactions and potentially prevent them. Applying hydrodynamic flow focusing, we present in this investigation the characterization of microchannels that allow study of the regions of high shear or high extension strain rate. Micro channels were fabricated in polydimethyl siloxane (PDMS)  using standard soft-lithography techniques with a photolithographically patterned mold. Characterization of the regions with high shear and high extension strain rate is presented. Computational Fluid Dynamics (CFD) simulations in three dimensions have been carried out to gain more detailed local flow information, and the results have been validated experimentally. A comparison between the numerical models and experiment and is presented. The advantages of microfluidic flow focusing in the study  of the effects of shear and extension strain rates for biological fluids are outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an innovative and simple, soft UV lithographic method “FIll-Molding In Capillaries” (FIMIC) that combines soft lithography with capillary force driven filling of micro-channels to create smooth hydrogel substrates with a 2D micro-pattern on the surface. The lithographic procedure involves the molding of a polymer; in our case a bulk PEG-based hydrogel, via UV-curing from a microfabricated silicon master. The grooves of the created regular line pattern are consequently filled with a second hydrogel by capillary action. As a result, a smooth surface is obtained with a well-defined pattern design of the two different polymers on its surface. The FIMIC method is very versatile; the only prerequisite is that the second material is liquid before curing in order to enable the filling process. In this specific case we present the proof of principle of this method by applying two hydrogels which differ in their crosslinking density and therefore in their elasticity. Preliminary cell culture studies on the fabricated elasticity patterned hydrogels indicate the preferred adhesion of the cells to the stiffer regions of the substrates, which implies that the novel substrates are a very useful platform for systematic cell migration studies, e.g. more fundamental investigation of the concept of “durotaxis”

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global warming has led to enormous challenges worldwide for a large variety of communities, particularly these associated to water and water treatment industry. Due to increasing scarcity of water resources, the development of new membrane materials and water treatment processes will play an important role in tackling this emerging problem. In this paper, the recent development in characterization of in particular, geometrical parameters of micro- and nano-membrane materials will be reviewed. Membranes with micro- and nano-pores have widely been used for ultrafiltration and nanofiltration. The structure of the pores and the surface of the pores/membranes may be optimized to achieve much improved flow rate in these micro-/nano-channels. Therefore, accurate characterization of porous structures will contribute significantly to the prediction of membrane performance. It will not only provide an insight into the new characterization methods but also the development of novel materials.